scholarly journals LOFAR detectability of prompt low-frequency radio emission during gamma-ray burst X-ray flares

2020 ◽  
Vol 494 (4) ◽  
pp. 5787-5792
Author(s):  
R L C Starling ◽  
A Rowlinson ◽  
A J van der Horst ◽  
R A M J Wijers

ABSTRACT The prompt emission in long gamma-ray bursts (GRBs) arises from within relativistic outflows created during the collapse of massive stars, and the mechanism by which radiation is produced may be either magnetically or matter dominated. In this work, we suggest an observational test of a magnetically dominated Poynting flux model that predicts both γ-ray and low-frequency radio pulses. A common feature among early light curves of long GRBs are X-ray flares, which have been shown to arise from sites internal to the jet. Ascribing these events to the prompt emission, we take an established Swift XRT flare sample and apply a magnetically dominated wind model to make predictions for the timing and flux density of corresponding radio pulses in the ∼100–200 MHz band observable with radio facilities such as LOFAR. We find that 44 per cent of the X-ray flares studied would have had detectable radio emission under this model, for typical sensitivities reached using LOFAR’s rapid response mode and assuming negligible absorption and scattering effects in the interstellar and intergalactic medium. We estimate the rate of Swift GRBs displaying X-ray flares with detectable radio pulses, accessible to LOFAR, of order seven per year. We determine that LOFAR triggered observations can play a key role in establishing the long debated mechanism responsible for GRB prompt emission.

Author(s):  
G. E. Anderson ◽  
P. J. Hancock ◽  
A. Rowlinson ◽  
M. Sokolowski ◽  
A. Williams ◽  
...  

Abstract Here we present stringent low-frequency (185 MHz) limits on coherent radio emission associated with a short-duration gamma-ray burst (SGRB). Our observations of the short gamma-ray burst (GRB) 180805A were taken with the upgraded Murchison Widefield Array (MWA) rapid-response system, which triggered within 20s of receiving the transient alert from the Swift Burst Alert Telescope, corresponding to 83.7 s post-burst. The SGRB was observed for a total of 30 min, resulting in a $3\sigma$ persistent flux density upper limit of 40.2 mJy beam–1. Transient searches were conducted at the Swift position of this GRB on 0.5 s, 5 s, 30 s and 2 min timescales, resulting in $3\sigma$ limits of 570–1 830, 270–630, 200–420, and 100–200 mJy beam–1, respectively. We also performed a dedispersion search for prompt signals at the position of the SGRB with a temporal and spectral resolution of 0.5 s and 1.28 MHz, respectively, resulting in a $6\sigma$ fluence upper-limit range from 570 Jy ms at DM $=3\,000$ pc cm–3 ( $z\sim 2.5$ ) to 1 750 Jy ms at DM $=200$ pc cm–3 ( $z\sim 0.1)$ , corresponding to the known redshift range of SGRBs. We compare the fluence prompt emission limit and the persistent upper limit to SGRB coherent emission models assuming the merger resulted in a stable magnetar remnant. Our observations were not sensitive enough to detect prompt emission associated with the alignment of magnetic fields of a binary neutron star just prior to the merger, from the interaction between the relativistic jet and the interstellar medium (ISM) or persistent pulsar-like emission from the spin-down of the magnetar. However, in the case of a more powerful SGRB (a gamma-ray fluence an order of magnitude higher than GRB 180805A and/or a brighter X-ray counterpart), our MWA observations may be sensitive enough to detect coherent radio emission from the jet-ISM interaction and/or the magnetar remnant. Finally, we demonstrate that of all current low- frequency radio telescopes, only the MWA has the sensitivity and response times capable of probing prompt emission models associated with the initial SGRB merger event.


Author(s):  
Tsvi Piran ◽  
Yi-Zhong Fan

Afterglow observations in the pre-Swift era confirmed to a large extend the relativistic blast wave model for gamma-ray bursts (GRBs). Together with the observations of properties of host galaxies and the association with (type Ic) SNe, this has led to the generally accepted collapsar origin of long GRBs. However, most of the afterglow data was collected hours after the burst. The X-ray telescope and the UV/optical telescope onboard Swift are able to slew to the direction of a burst in real time and record the early broadband afterglow light curves. These observations, and in particular the X-ray observations, resulted in many surprises. While we have anticipated a smooth transition from the prompt emission to the afterglow, many observed that early light curves are drastically different. We review here how these observations are changing our understanding of GRBs.


2020 ◽  
Vol 499 (4) ◽  
pp. 5986-5992
Author(s):  
Nikhil Sarin ◽  
Paul D Lasky ◽  
Gregory Ashton

ABSTRACT The spin-down energy of millisecond magnetars has been invoked to explain X-ray afterglow observations of a significant fraction of short and long gamma-ray bursts. Here, we extend models previously introduced in the literature, incorporating radiative losses with the spin-down of a magnetar central engine through an arbitrary braking index. Combining this with a model for the tail of the prompt emission, we show that our model can better explain the data than millisecond-magnetar models without radiative losses or those that invoke spin-down solely through vacuum dipole radiation. We find that our model predicts a subset of X-ray flares seen in some gamma-ray bursts. We can further explain the diversity of X-ray plateaus by altering the radiative efficiency and measure the braking index of newly born millisecond magnetars. We measure the braking index of GRB061121 as $n=4.85^{+0.11}_{-0.15}$ suggesting the millisecond-magnetar born in this gamma-ray burst spins down predominantly through gravitational-wave emission.


2008 ◽  
Vol 386 (2) ◽  
pp. 859-863 ◽  
Author(s):  
P. A. Curran ◽  
A. J. van der Horst ◽  
R. A. M. J. Wijers
Keyword(s):  

2016 ◽  
Vol 12 (S324) ◽  
pp. 54-61
Author(s):  
Diego Götz ◽  
Stefano Covino

AbstractWe review the current observational and theoretical status of the polarization measurements of Gamma-ray Bursts at all wavelengths. Gamma-Ray Bursts are thought to be produced by an ultra-relativistic jet, possibly powered by a black hole. One of the most important open point is the composition of the jet: the energy may be carried out from the central source either as kinetic energy (of baryons and/or pairs), or in electromagnetic form (Poynting flux). The polarization properties are expected to help disentangling main energy carrier. The prompt emission and afterglow polarization are also a powerful diagnostic of the jet geometry.


2005 ◽  
Vol 14 (01) ◽  
pp. 97-105 ◽  
Author(s):  
REMO RUFFINI ◽  
CARLO LUCIANO BIANCO ◽  
SHE-SHENG XUE ◽  
PASCAL CHARDONNET ◽  
FEDERICO FRASCHETTI ◽  
...  

It is shown that the concept of a fireball with a definite filamentary structure naturally emerges from the analysis of the spectra of Gamma-Ray Bursts (GRBs). These results, made possible by the recently obtained analytic expressions of the equitemporal surfaces in the GRB afterglow, depend crucially on the single parameter ℛ describing the effective area of the fireball emitting the X-ray and gamma-ray radiation. The X-ray and gamma-ray components of the afterglow radiation are shown to have a thermal spectrum in the co-moving frame of the fireball and originate from a stable shock front described self-consistently by the Rankine–Hugoniot equations. Precise predictions are presented on a correlation between spectral changes and intensity variations in the prompt radiation verifiable, e.g., by the Swift and future missions. The highly variable optical and radio emission depends instead on the parameters of the surrounding medium. The GRB 991216 is used as a prototype for this model.


2008 ◽  
Vol 17 (09) ◽  
pp. 1343-1349 ◽  
Author(s):  
S. D. VERGANI ◽  
D. MALESANI ◽  
E. MOLINARI

We present observations of the early afterglow emission of GRB 060418. Thanks to the simultaneous coverage at optical, X-ray and gamma-ray wavelengths, we can detect and separate the external shock emission (visible in the optical and late X-ray data) and the central engine activity (early X and gamma rays). The two components are clearly distinguished based on temporal and spectral properties. The detection of the afterglow onset (in the optical) allows the determination of the fundamental fireball properties, namely its bulk Lorentz factor and total energy. The early time X-ray flare closely resembles the prompt emission gamma-ray pulses in its temporal profile, being wider at low energies and showing lags between the hard and soft bands. This provides a strong suggestion that X-ray flares are a continuation of the prompt emission.


2002 ◽  
Vol 141 (2) ◽  
pp. 415-428 ◽  
Author(s):  
D. A. Smith ◽  
A. Levine ◽  
H. Bradt ◽  
K. Hurley ◽  
M. Feroci ◽  
...  

2020 ◽  
Vol 495 (1) ◽  
pp. 1110-1121 ◽  
Author(s):  
E Massaro ◽  
F Capitanio ◽  
M Feroci ◽  
T Mineo ◽  
A Ardito ◽  
...  

ABSTRACT The microquasar GRS 1915+105 is known to exhibit a very variable X-ray emission on different time-scales and patterns. We propose a system of two ordinary differential equations, adapted from the Hindmarsh–Rose model, with two dynamical variables x(t), y(t), and an input constant parameter J0, to which we added a random white noise, whose solutions for the x(t) variable reproduce consistently the X-ray light curves of several variability classes as well as the development of low-frequency quasi-periodic oscillations (QPO). We show that changing only the value of J0, the system moves from stable to unstable solutions and the resulting light curves reproduce those of the quiescent classes like ϕ and χ, the δ class and the spiking ρ class. Moreover, we found that increasing the values of J0 the system induces high-frequency oscillations that evolve into QPO when it moves into another stable region. This system of differential equations gives then a unified view of the variability of GRS 1915+105 in term of transitions between stable and unstable states driven by a single input function J0. We also present the results of a stability analysis of the equilibrium points and some considerations on the existence of periodic solutions.


2019 ◽  
Vol 622 ◽  
pp. A20 ◽  
Author(s):  
D. N. Hoang ◽  
T. W. Shimwell ◽  
R. J. van Weeren ◽  
G. Brunetti ◽  
H. J. A. Röttgering ◽  
...  

Context. Extended synchrotron radio sources are often observed in merging galaxy clusters. Studies of the extended emission help us to understand the mechanisms in which the radio emitting particles gain their relativistic energies. Aims. We examine the possible acceleration mechanisms of the relativistic particles that are responsible for the extended radio emission in the merging galaxy cluster Abell 520. Methods. We performed new 145 MHz observations with the LOw Frequency ARay (LOFAR) and combined these with archival Giant Metrewave Radio Telescope (GMRT) 323 MHz and Very Large Array (VLA) 1.5 GHz data to study the morphological and spectral properties of extended cluster emission. The observational properties are discussed in the framework of particle acceleration models associated with cluster merger turbulence and shocks. Results. In Abell 520, we confirm the presence of extended (760 × 950 kpc2) synchrotron radio emission that has been classified as a radio halo. The comparison between the radio and X-ray brightness suggests that the halo might originate in a cocoon rather than from the central X-ray bright regions of the cluster. The halo spectrum is roughly uniform on the scale of 66 kpc. There is a hint of spectral steepening from the SW edge towards the cluster centre. Assuming diffusive shock acceleration (DSA), the radio data are suggestive of a shock Mach number of ℳSW = 2.6−0.2+0.3 that is consistent with the X-ray derived estimates. This is in agreement with the scenario in which relativistic electrons in the SW radio edge gain their energies at the shock front via acceleration of either thermal or fossil electrons. We do not detect extended radio emission ahead of the SW shock that is predicted if the emission is the result of adiabatic compression. An X-ray surface brightness discontinuity is detected towards the NE region that may be a counter shock of Mach number ℳNEX = 1.52±0.05. This is lower than the value predicted from the radio emission which, assuming DSA, is consistent with ℳNE = 2.1 ± 0.2. Conclusions. Our observations indicate that the radio emission in the SW of Abell 520 is likely effected by the prominent X-ray detected shock in which radio emitting particles are (re-)accelerated through the Fermi-I mechanism. The NE X-ray discontinuity that is approximately collocated with an edge in the radio emission hints at the presence of a counter shock.


Sign in / Sign up

Export Citation Format

Share Document