scholarly journals Studies of extragalactic background light with TeV BL Lacertae objects

2020 ◽  
Vol 499 (2) ◽  
pp. 2662-2671
Author(s):  
Qin Longhua ◽  
Wang Jiancheng ◽  
Gao Quangui ◽  
Na Weiwei ◽  
Li Huaizhen ◽  
...  

ABSTRACT Very high energy (VHE; E ≥ 100 GeV) gamma-rays from cosmological distances are attenuated by the extragalactic background light (EBL) in the infrared to ultraviolet bands. By contrasting measured versus intrinsic emission,we can derive the EBL photon density. However, we do not know the intrinsic spectra and the EBL separately, only their combined effect. Here we first present a flexible model-dependent optical depth method to study the EBL by fitting the emission spectra of TeV BL Lacertae objects (BL Lacs) via a one-zone leptonic synchrotron self-Compton model (SSC). We have little information about electron energy distributions (EEDs) in the jet, which is critically important to build spectral energy distributions (SEDs) in the SSC scenario. Based on current particle acceleration models, we use two types of EEDs to fit the observed spectra: a power-law log-parabola (PLLP) EED and a broken power-law (BPL) EED. We find that the upper limit of the EBL density is about 30 n W m−2 sr−1, which is similar to the published measurement. Furthermore, we propose an unprecedented method to test the radiation mechanisms involved in TeV objects, by simply comparing the reduced EBL density with the limit obtained by galaxy counts. We demonstrate that for some BL Lacs, at least, the one-zone SSC model should be reconsidered.

2011 ◽  
Vol 7 (S284) ◽  
pp. 442-445
Author(s):  
Alberto Domínguez

AbstractThe extragalactic background light (EBL) is of fundamental importance both for understanding the entire process of galaxy evolution and for γ-ray astronomy. However, the overall spectrum of the EBL between 0.1 and 1000 μm has never been determined directly, neither from observed luminosity functions (LFs), over a wide redshift range, nor from any multiwavelength observation of galaxy spectral energy distributions (SEDs). The evolving overall spectrum of the EBL is derived here utilizing a novel method based on observations only. It is emphasized that the local EBL seems already well constrained from the UV up to the mid-IR. Different independent methodologies such as direct measurement, galaxy counts, γ-ray attenuation and realistic EBL modelings point towards the same EBL intensity level. Therefore, a relevant contribution from Pop III stars to the local EBL seems unlikely.


2020 ◽  
Vol 500 (2) ◽  
pp. 2188-2195
Author(s):  
Andrey Saveliev ◽  
Rafael Alves Batista

ABSTRACT The recent observation of high-energy neutrinos from the 2017 flare of the blazar TXS 0506+056, together with counterparts across the whole electromagnetic spectrum, opens up new possibilities for investigating the properties of this class of objects as well as the traversed medium. Propagation effects such as the attenuation of the very-high-energy gamma-ray component by the extragalactic background light are well known, and usually taken into account when fitting spectral energy distributions of objects. Other effects such as those of intergalactic magnetic fields are, however, often neglected. In this work, we present a comprehensive study of the influence of these fields and the extragalactic background light on the determination of the intrinsic gamma-ray spectrum of this blazar.


1994 ◽  
Vol 159 ◽  
pp. 506-507
Author(s):  
P. Giommi ◽  
S. G. Ansari ◽  
A. Micol

We have constructed radio to X-ray energy distributions for a large number of BL Lacertae objects using archival data. We find that Radio to optical spectra of RBLs and XBLs are very similar. Large differences are seen at higher frequencies where RBLs very frequently show a cutoff near the optical band while XBLs usually do not show any turnover before UV/X-ray energies. Our data is consistent with a picture where RBL and XBL are from the same parent population, the XBL simply being those (rare) objects where the break in the energy distribution is located at high energy.


2003 ◽  
Vol 12 (05) ◽  
pp. 781-789 ◽  
Author(s):  
G. Z. XIE ◽  
S. X. DING ◽  
H. DAI ◽  
E. W. LIANG ◽  
H. T. LIU

In this paper, we introduce a new composite spectral indices αγxγ = αxγ - αγ, and prove [Formula: see text], that means αγxγ is intrinsic. We plot a αxox - αγxγ diagram for 25 Gev γ-ray blazars for which αx and αγ have been provided in the literature, where αxox = αox - αx which was introduced by Sambruna et al. (1996) and proved that it is intrinsic by our previous paper (Xie et al. 2001). Using this new composite color–color (αxox - αγxγ) diagram, we investigated the nature of the HBLs–LBLs relationship, and the BL Lacs–FSRQs relationship, in high-energy emission. The results show that the spectral energy distributions of three subclasses of Gev γ-ray loud blazars are different, but essentially continuous: HBLs and FSRQs occupy separated regions while LBLs bridge the gap between HBLs and FSRQs. The results are consistent with that derived from a low energy color–color(αxox - αoro) diagram by Sambruna et al. (1996) and Xie et al. (2001). However, on the αox - αxγ diagram, FSRQs, LBLs and HBLs occupy same region. Because both αγxγ and αxox are intrinsic, thus, the new connection among HBLs, LBLs and FSRQs obtained by us is intrinsic.


2000 ◽  
Vol 17 (1) ◽  
pp. 56-71 ◽  
Author(s):  
Paul J. Francis ◽  
Matthew T. Whiting ◽  
Rachel L. Webster

AbstractWe present quasi-simultaneous multi-colour optical/near-IR photometry for 157 radio selected quasars, forming an unbiassed sub-sample of the Parkes Flat-Spectrum Sample. Data are also presented for 12 optically selected QSOs, drawn from the Large Bright QSO Survey. The spectral energy distributions of the radio- and optically-selected sources are quite different. The optically selected QSOs are all very similar: they have blue spectral energy distributions curving downwards at shorter wavelengths. Roughly 90% of the radio-selected quasars have roughly power-law spectral energy distributions, with slopes ranging from Fv∝v0 to Fv∝v−2. The remaining 10% have spectral energy distributions showing sharp peaks: these are radio galaxies and highly reddened quasars. Four radio sources were not detected down to magnitude limits of H ∼ 19·6. These are probably high redshift (z > 3) galaxies or quasars. We show that the colours of our red quasars lie close to the stellar locus in the optical: they will be hard to identify in surveys such as the Sloan Digital Sky Survey. If near-IR photometry is added, however, the red power-law sources can be clearly separated from the stellar locus: IR surveys such as 2MASS should be capable of finding these sources on the basis of their excess flux in the K-band.


2018 ◽  
Vol 611 ◽  
pp. A44 ◽  
Author(s):  
S. R. Patel ◽  
A. Shukla ◽  
V. R. Chitnis ◽  
D. Dorner ◽  
K. Mannheim ◽  
...  

Aims. The nearby TeV blazar 1ES 1959+650 (z = 0.047) was reported to be in flaring state during June–July 2016 by Fermi-LAT, FACT, MAGIC and VERITAS collaborations. We studied the spectral energy distributions (SEDs) in different states of the flare during MJD 57530–57589 using simultaneous multiwaveband data with the aim of understanding the possible broadband emission scenario during the flare. Methods. The UV-optical and X-ray data from UVOT and XRT respectively on board Swift and high energy γ-ray data from Fermi-LAT were used to generate multiwaveband lightcurves as well as to obtain high flux states and quiescent state SEDs. The correlation and lag between different energy bands was quantified using discrete correlation function. The synchrotron self-Compton (SSC) model was used to reproduce the observed SEDs during flaring and quiescent states of the source. Results. A good correlation is seen between X-ray and high energy γ-ray fluxes. The spectral hardening with increase in the flux is seen in X-ray band. The power law index vs. flux plot in γ-ray band indicates the different emission regions for 0.1–3 GeV and 3–300 GeV energy photons. Two zone SSC model satisfactorily fits the observed broadband SEDs. The inner zone is mainly responsible for producing synchrotron peak and high energy γ-ray part of the SED in all states. The second zone is mainly required to produce less variable optical-UV and low energy γ-ray emission. Conclusions. Conventional single zone SSC model does not satisfactorily explain broadband emission during observation period considered. There is an indication of two emission zones in the jet which are responsible for producing broadband emission from optical to high energy γ-rays.


Sign in / Sign up

Export Citation Format

Share Document