scholarly journals Helicity in the large-scale Galactic magnetic field

2020 ◽  
Vol 499 (3) ◽  
pp. 3673-3689
Author(s):  
J L West ◽  
R N Henriksen ◽  
K Ferrière ◽  
A Woodfinden ◽  
T Jaffe ◽  
...  

ABSTRACT We search for observational signatures of magnetic helicity in data from all-sky radio polarization surveys of the Milky Way Galaxy. Such a detection would help confirm the dynamo origin of the field and may provide new observational constraints for its shape. We compare our observational results to simulated observations for both a simple helical field, and for a more complex field that comes from a solution to the dynamo equation. Our simulated observations show that the large-scale helicity of a magnetic field is reflected in the large-scale structure of the fractional polarization derived from the observed synchrotron radiation and Faraday depth of the diffuse Galactic synchrotron emission. Comparing the models with the observations provides evidence for the presence of a quadrupolar magnetic field with a vertical component that is pointing away from the observer in both hemispheres of the Milky Way Galaxy. Since there is no reason to believe that the Galactic magnetic field is unusual when compared to other galaxies, this result provides further support for the dynamo origin of large-scale magnetic fields in galaxies.

2019 ◽  
Vol 623 ◽  
pp. A113 ◽  
Author(s):  
Anvar Shukurov ◽  
Luiz Felippe S. Rodrigues ◽  
Paul J. Bushby ◽  
James Hollins ◽  
Jörg P. Rachen

Context. A convenient representation of the structure of the large-scale galactic magnetic field is required for the interpretation of polarization data in the sub-mm and radio ranges, in both the Milky Way and external galaxies. Aims. We develop a simple and flexible approach to construct parametrised models of the large-scale magnetic field of the Milky Way and other disc galaxies, based on physically justifiable models of magnetic field structure. The resulting models are designed to be optimised against available observational data. Methods. Representations for the large-scale magnetic fields in the flared disc and spherical halo of a disc galaxy were obtained in the form of series expansions whose coefficients can be calculated from observable or theoretically known galactic properties. The functional basis for the expansions is derived as eigenfunctions of the mean-field dynamo equation or of the vectorial magnetic diffusion equation. Results. The solutions presented are axially symmetric but the approach can be extended straightforwardly to non-axisymmetric cases. The magnetic fields are solenoidal by construction, can be helical, and are parametrised in terms of observable properties of the host object, such as the rotation curve and the shape of the gaseous disc. The magnetic field in the disc can have a prescribed number of field reversals at any specified radii. Both the disc and halo magnetic fields can separately have either dipolar or quadrupolar symmetry. The model is implemented as a publicly available software package GALMAG which allows, in particular, the computation of the synchrotron emission and Faraday rotation produced by the model’s magnetic field. Conclusions. The model can be used in interpretations of observations of magnetic fields in the Milky Way and other spiral galaxies, in particular as a prior in Bayesian analyses. It can also be used for a simple simulation of a time-dependent magnetic field generated by dynamo action.


2002 ◽  
Vol 206 ◽  
pp. 371-374 ◽  
Author(s):  
Vincent L. Fish ◽  
Mark J. Reid ◽  
Alice L. Argon ◽  
Karl M. Menten

Zeeman measurements of OH masers are used to probe the magnetic field around regions of massive star formation. Previous observations suggested that OH maser field directions were aligned in a clockwise sense in the Milky Way, but recent data from a large-scale VLA survey do not support this hypothesis. However, these observations suggest that the magnetic field of the Milky Way is correlated on kiloparsec scales.


2020 ◽  
Vol 497 (3) ◽  
pp. 3097-3117
Author(s):  
Y K Ma ◽  
S A Mao ◽  
A Ordog ◽  
J C Brown

ABSTRACT The Milky Way is one of the very few spiral galaxies known to host large-scale magnetic field reversals. The existence of the field reversal in the first Galactic quadrant near the Sagittarius spiral arm has been well established, yet poorly characterized due to the insufficient number of reliable Faraday depths (FDs) from extragalactic radio sources (EGSs) through this reversal region. We have therefore performed broad-band (1–$2\, {\rm GHz}$) spectropolarimetric observations with the Karl G. Jansky Very Large Array (VLA) to determine the FD values of 194 EGSs in the Galactic longitude range of 20°–52° within ±5° from the Galactic mid-plane, covering the Sagittarius arm tangent. This factor of five increase in the EGS FD density has led to the discovery of a disparity in FD values across the Galactic mid-plane in the Galactic longitude range of 40°–52°. Combined with existing pulsar FD measurements, we suggest that the Sagittarius arm can host an odd-parity disc field. We further compared our newly derived EGS FDs with the predictions of three major Galactic magnetic field models, and concluded that none of them can adequately reproduce our observational results. This has led to our development of new, improved models of the Milky Way disc magnetic field that will serve as an important step towards major future improvements in Galactic magnetic field models.


2020 ◽  
Vol 636 ◽  
pp. A2
Author(s):  
I. M. Polderman ◽  
M. Haverkorn ◽  
T. R. Jaffe

Context. Cosmic rays (CRs) and the Galactic magnetic field (GMF) are fundamental actors in many processes in the Milky Way. The observed interaction product of these actors is Galactic synchrotron emission integrated over the line of sight (LOS). A comparison to simulations can be made with this tracer using existing GMF models and CR density models. This probes the GMF strength and morphology and the CR density. Aims. Our aim is to provide insight into the Galactic CR density and the distribution and morphology of the GMF strength by exploring and explaining the differences between the simulations and observations of synchrotron intensity. Methods. At low radio frequencies HII regions become opaque due to free–free absorption. Using these HII regions we can measure the synchrotron intensity over a part of the LOS through the Galaxy. The measured intensity per unit path length, that is, the emissivity, for HII regions at different distances, allows us to probe the variation in synchrotron emission not only across the sky but also in the third dimension of distance. Performing these measurements on a large scale is one of the new applications of the window opened by current low-frequency arrays. Using a number of existing GMF models in conjunction with the Galactic CR modeling code GALPROP, we can simulate these synchrotron emissivities. Results. We present an updated catalog, compiled from the literature, of low-frequency absorption measurements of HII regions, their distances, and electron temperatures. We report a simulated emissivity that shows a compatible trend for HII regions that are near the observer. However, we observe a systematically increasing synchrotron emissivity for HII regions that are far from the observer, which is not compatible with the values simulated by the GMF models and GALPROP. Conclusions. Current GMF models plus a GALPROP generated CR density model cannot explain low-frequency absorption measurements. One possibility is that distances to all HII regions catalogued at the kinematic “far” distance are erroneously determined, although this is unlikely since it ignores all evidence for far distances in the literature. However, a detection bias due to the nature of this tracer requires us to keep in mind that certain sources may be missed in an observation. The other possibilities are an enhanced emissivity in the outer Galaxy or a diminished emissivity in the inner Galaxy.


2007 ◽  
Vol 16 (12b) ◽  
pp. 2399-2405 ◽  
Author(s):  
FRANCESC FERRER ◽  
TANMAY VACHASPATI

Observations of the Milky Way by the SPI/INTEGRAL satellite have confirmed the presence of a strong 511 keV gamma ray line emission from the bulge, which requires an intense source of positrons in the galactic center. These observations are hard to account for by conventional astrophysical scenarios, whereas other proposals, such as light DM, face stringent constraints from the diffuse gamma ray background. Here we suggest that light superconducting strings could be the source of the observed 511 keV emission. The associated particle physics, at the ~ 1 TeV scale, is within the reach of planned accelerator experiments, while the distinguishing spatial distribution, proportional to the galactic magnetic field, could be mapped by SPI or by future, more sensitive satellite missions.


2019 ◽  
Vol 621 ◽  
pp. A97 ◽  
Author(s):  
A. Bracco ◽  
S. Candelaresi ◽  
F. Del Sordo ◽  
A. Brandenburg

Context. The analysis of the full-sky Planck polarization data at 850 μm revealed unexpected properties of the E- and B-mode power spectra of dust emission in the interstellar medium (ISM). The positive cross-correlations over a wide range of angular scales between the total dust intensity, T, and both E and (most of all) B modes has raised new questions about the physical mechanisms that affect dust polarization, such as the Galactic magnetic field structure. This is key both to better understanding ISM dynamics and to accurately describing Galactic foregrounds to the polarization of the cosmic microwave background (CMB). In particular, in the quest to find primordial B modes of the CMB, the observed positive cross-correlation between T and B for interstellar dust requires further investigation towards parity-violating processes in the ISM. Aims. In this theoretical paper we investigate the possibility that the observed cross-correlations in the dust polarization power spectra, and specifically the one between T and B, can be related to a parity-odd quantity in the ISM such as the magnetic helicity. Methods. We produce synthetic dust polarization data, derived from 3D analytical toy models of density structures and helical magnetic fields, to compare with the E and B modes of observations. We present several models. The first is an ideal fully helical isotropic case, such as the Arnold-Beltrami-Childress field. Second, following the nowadays favored interpretation of the T–E signal in terms of the observed alignment between the magnetic field morphology and the filamentary density structure of the diffuse ISM, we design models for helical magnetic fields wrapped around cylindrical interstellar filaments. Lastly, focusing on the observed T–B correlation, we propose a new line of interpretation of the Planck observations advocating the presence of a large-scale helical component of the Galactic magnetic field in the solar neighborhood. Results. Our analysis shows that: I) the sign of magnetic helicity does not affect E and B modes for isotropic magnetic-field configurations; II) helical magnetic fields threading interstellar filaments cannot reproduce the Planck results; and III) a weak helical left-handed magnetic field structure in the solar neighborhood may explain the T–B correlation seen in the Planck data. Such a magnetic-field configuration would also account for the observed large-scale T–E correlation. Conclusions. This work suggests a new perspective for the interpretation of the dust polarization power spectra that supports the imprint of a large-scale structure of the Galactic magnetic field in the solar neighborhood.


1993 ◽  
Vol 157 ◽  
pp. 349-353
Author(s):  
A. Poezd ◽  
A. Shukurov ◽  
D.D. Sokoloff

A nonlinear thin-disk galactic dynamo model based on α-quenching is proposed. Assuming that the mean helicity depends on the magnetic field strength averaged across the disk, we derive a universal form of nonlinearity in the radial dynamo equation. We discuss the evolution of the regular magnetic field in the Milky Way and the Andromeda Nebula. It is argued that the reversals of the regular magnetic field in the Galaxy are a relic inherited from the structure of the seed field. We also briefly discuss the role of the turbulent diamagnetism and the effects of galactic evolution on the dynamo.


2011 ◽  
Author(s):  
Aristeidis Noutsos ◽  
Marta Burgay ◽  
Nicolò D’Amico ◽  
Paolo Esposito ◽  
Alberto Pellizzoni ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document