scholarly journals Discovery and follow-up of ASASSN-19dj: an X-ray and UV luminous TDE in an extreme post-starburst galaxy

2020 ◽  
Vol 500 (2) ◽  
pp. 1673-1696 ◽  
Author(s):  
Jason T Hinkle ◽  
T W-S Holoien ◽  
K Auchettl ◽  
B J Shappee ◽  
J M M Neustadt ◽  
...  

ABSTRACT We present observations of ASASSN-19dj, a nearby tidal disruption event (TDE) discovered in the post-starburst galaxy KUG 0810+227 by the All-Sky Automated Survey for Supernovae (ASAS-SN) at a distance of d ≃ 98 Mpc. We observed ASASSN-19dj from −21 to 392 d relative to peak ultraviolet (UV)/optical emission using high-cadence, multiwavelength spectroscopy and photometry. From the ASAS-SN g-band data, we determine that the TDE began to brighten on 2019 February 6.8 and for the first 16 d the rise was consistent with a flux ∝t2 power law. ASASSN-19dj peaked in the UV/optical on 2019 March 6.5 (MJD = 58548.5) at a bolometric luminosity of L = (6.2 ± 0.2) × 1044 erg s−1. Initially remaining roughly constant in X-rays and slowly fading in the UV/optical, the X-ray flux increased by over an order of magnitude ∼225 d after peak, resulting from the expansion of the X-ray emitting region. The late-time X-ray emission is well fitted by a blackbody with an effective radius of ∼1 × 1012 cm and a temperature of ∼6 × 105 K. The X-ray hardness ratio becomes softer after brightening and then returns to a harder state as the X-rays fade. Analysis of Catalina Real-Time Transient Survey images reveals a nuclear outburst roughly 14.5 yr earlier with a smooth decline and a luminosity of LV ≥ 1.4 × 1043 erg s−1, although the nature of the flare is unknown. ASASSN-19dj occurred in the most extreme post-starburst galaxy yet to host a TDE, with Lick HδA = 7.67 ± 0.17 Å.

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Xinwen Shu ◽  
Wenjie Zhang ◽  
Shuo Li ◽  
Ning Jiang ◽  
Liming Dou ◽  
...  

AbstractOptical transient surveys have led to the discovery of dozens of stellar tidal disruption events (TDEs) by massive black hole in the centers of galaxies. Despite extensive searches, X-ray follow-up observations have produced no or only weak X-ray detections in most of them. Here we report the discovery of delayed X-ray brightening around 140 days after the optical outburst in the TDE OGLE16aaa, followed by several flux dips during the decay phase. These properties are unusual for standard TDEs and could be explained by the presence of supermassive black hole binary or patchy obscuration. In either scenario, the X-rays can be produced promptly after the disruption but are blocked in the early phase, possibly by a radiation-dominated ejecta which leads to the bulk of optical and ultraviolet emission. Our findings imply that the reprocessing is important in the TDE early evolution, and X-ray observations are promising in revealing supermassive black hole binaries.


2020 ◽  
Vol 498 (3) ◽  
pp. 4119-4133 ◽  
Author(s):  
P Short ◽  
M Nicholl ◽  
A Lawrence ◽  
S Gomez ◽  
I Arcavi ◽  
...  

ABSTRACT We present results from spectroscopic observations of AT 2018hyz, a transient discovered by the All-Sky Automated Survey for Supernova survey at an absolute magnitude of MV ∼ −20.2 mag, in the nucleus of a quiescent galaxy with strong Balmer absorption lines. AT 2018hyz shows a blue spectral continuum and broad emission lines, consistent with previous TDE candidates. High cadence follow-up spectra show broad Balmer lines and He i in early spectra, with He ii making an appearance after ∼70–100 d. The Balmer lines evolve from a smooth broad profile, through a boxy, asymmetric double-peaked phase consistent with accretion disc emission, and back to smooth at late times. The Balmer lines are unlike typical active galactic nucleus in that they show a flat Balmer decrement (Hα/Hβ ∼ 1.5), suggesting the lines are collisionally excited rather than being produced via photoionization. The flat Balmer decrement together with the complex profiles suggests that the emission lines originate in a disc chromosphere, analogous to those seen in cataclysmic variables. The low optical depth of material due to a possible partial disruption may be what allows us to observe these double-peaked, collisionally excited lines. The late appearance of He ii may be due to an expanding photosphere or outflow, or late-time shocks in debris collisions.


2011 ◽  
Vol 7 (S285) ◽  
pp. 261-268
Author(s):  
Glennys R. Farrar

AbstractThe past year has seen major advances in the observational status of Stellar Tidal Disruption, with the discovery of two strong optical candidates in archived SDSS data and the real-time X-ray detection of Swift J1644+57, plus rapid radio and optical follow-up establishing it as a probable Tidal Disruption Flare (TDF) in “blazar mode”. These observations motivated a workshop devoted to discussion of such events and of the theory of their emission and flare rate. Observational contributions included a presentation of Swift J2058+05 (a possible second example of a TDF in blazar mode), reports on the late-time evolution and X-ray variability of the two Swift events, and a proposal that additional candidates may be evidenced by spectral signatures in SDSS. Theory presentations included models of radio emission, theory of light curves and the proposal that GRB101225A may be the Galactic tidal disruption of a neutron star, an interpretation of Swift J1644+57 as due to the disruption of a white dwarf instead of main-sequence star, calculation of the dependence of the TDF rate on the spin of the black hole, and analysis of the SDSS events, fitting their SEDs to profiles of thoretical emission from accretion disks and showing that their luminosity and rate are consistent with the proposal that TDEs can be responsible for UHECR acceleration.


2019 ◽  
Vol 630 ◽  
pp. A98 ◽  
Author(s):  
R. D. Saxton ◽  
A. M. Read ◽  
S. Komossa ◽  
P. Lira ◽  
K. D. Alexander ◽  
...  

Aims. We investigate the evolution of X-ray selected tidal disruption events. Methods. New events are found in near real-time data from XMM-Newton slews, and are monitored by multi-wavelength facilities. Results. In August 2016, X-ray emission was detected from the galaxy XMMSL2 J144605.0+685735 (also known as 2MASX 14460522+6857311), that was 20 times higher than an upper limit from 25 years earlier. The X-ray flux was flat for ∼100 days and then fell by a factor of 100 over the following 500 days. The UV flux was stable for the first 400 days before fading by a magnitude, while the optical (U,B,V) bands were roughly constant for 850 days. Optically, the galaxy appears to be quiescent, at a distance of 127 ± 4 Mpc (z = 0.029 ± 0.001) with a spectrum consisting of a young stellar population of 1–5 Gyr in age, an older population, and a total stellar mass of ∼6 × 109 M⊙. The bolometric luminosity peaked at Lbol ∼ 1043 ergs s−1 with an X-ray spectrum that may be modelled by a power law of Γ ∼ 2.6 or Comptonisation of a low-temperature thermal component by thermal electrons. We consider a tidal disruption event to be the most likely cause of the flare. Radio emission was absent in this event down to < 10 μJy, which limits the total energy of a hypothetical off-axis jet to E <  5 × 1050 ergs. The independent behaviour of the optical, UV, and X-ray light curves challenges models where the UV emission is produced by reprocessing of thermal nuclear emission or by stream-stream collisions. We suggest that the observed UV emission may have been produced from a truncated accretion disc and the X-rays from Compton upscattering of these disc photons.


2019 ◽  
Vol 489 (1) ◽  
pp. 1463-1480 ◽  
Author(s):  
F Onori ◽  
G Cannizzaro ◽  
P G Jonker ◽  
M Fraser ◽  
Z Kostrzewa-Rutkowska ◽  
...  

ABSTRACT We present the results from Nordic Optical Telescope and X-shooter follow-up campaigns of the tidal disruption event (TDE) iPTF16fnl, covering the first ∼100 d after the transient discovery. We followed the source photometrically until the TDE emission was no longer detected above the host galaxy light. The bolometric luminosity evolution of the TDE is consistent with an exponential decay with e-folding constant t0 = 17.6 ± 0.2 d. The early-time spectra of the transient are dominated by broad He ii λ4686, H $\beta$, H $\alpha$, and N iii λ4100 emission lines. The latter is known to be produced together with the N iii λ4640 in the Bowen fluorescence mechanism. Due to the medium-resolution X-shooter spectra we have been able to separate the Bowen blend contribution from the broad He ii emission line. The detection of the Bowen fluorescence lines in iPTF16fnl place this transient among the N-rich TDE subset. In the late-time X-shooter spectra, narrow emission lines of [O iii] and [N ii] originating from the host galaxy are detected, suggesting that the host galaxy harbours a weak active galactic nucleus in its core. The properties of all broad emission lines evolve with time. The equivalent widths follow an exponential decay compatible with the bolometric luminosity evolution. The full width at half-maximum of the broad lines decline with time and the line profiles develop a narrow core at later epochs. Overall, the optical emission of iPTF16fnl can be explained by being produced in an optically thick region in which high densities favour the Bowen fluorescence mechanism and where multiple electron scatterings are responsible for the line broadening.


2020 ◽  
Vol 499 (1) ◽  
pp. 482-504 ◽  
Author(s):  
M Nicholl ◽  
T Wevers ◽  
S R Oates ◽  
K D Alexander ◽  
G Leloudas ◽  
...  

ABSTRACT At 66 Mpc, AT2019qiz is the closest optical tidal disruption event (TDE) to date, with a luminosity intermediate between the bulk of the population and the faint-and-fast event iPTF16fnl. Its proximity allowed a very early detection and triggering of multiwavelength and spectroscopic follow-up well before maximum light. The velocity dispersion of the host galaxy and fits to the TDE light curve indicate a black hole mass ≈106 M⊙, disrupting a star of ≈1 M⊙. By analysing our comprehensive UV, optical, and X-ray data, we show that the early optical emission is dominated by an outflow, with a luminosity evolution L ∝ t2, consistent with a photosphere expanding at constant velocity (≳2000 km s−1), and a line-forming region producing initially blueshifted H and He ii profiles with v = 3000–10 000 km s−1. The fastest optical ejecta approach the velocity inferred from radio detections (modelled in a forthcoming companion paper from K. D. Alexander et al.), thus the same outflow may be responsible for both the fast optical rise and the radio emission – the first time this connection has been observed in a TDE. The light-curve rise begins 29 ± 2 d before maximum light, peaking when the photosphere reaches the radius where optical photons can escape. The photosphere then undergoes a sudden transition, first cooling at constant radius then contracting at constant temperature. At the same time, the blueshifts disappear from the spectrum and Bowen fluorescence lines (N iii) become prominent, implying a source of far-UV photons, while the X-ray light curve peaks at ≈1041 erg s−1. Assuming that these X-rays are from prompt accretion, the size and mass of the outflow are consistent with the reprocessing layer needed to explain the large optical to X-ray ratio in this and other optical TDEs, possibly favouring accretion-powered over collision-powered outflow models.


1988 ◽  
Vol 13 (4) ◽  
pp. 458-462
Author(s):  
H. TEISEN ◽  
J. HJARBAEK
Keyword(s):  
X Rays ◽  

The X-rays of 17 patients with fresh fractures of the lunate bone have been reviewed. The fractures were classified according to their radiological appearances and according to the vascular anatomy of the lunate. A long term X-ray follow-up examination was performed.


2021 ◽  
Vol 502 (3) ◽  
pp. 3385-3393
Author(s):  
Tatsuya Matsumoto ◽  
Tsvi Piran

ABSTRACT The discovery of optical/UV (ultraviolet) tidal disruption events (TDEs) was surprising. The expectation was that, upon returning to the pericentre, the stellar-debris stream will form a compact disc that will emit soft X-rays. Indeed, the first TDEs were discovered in this energy band. A common explanation for the optical/UV events is that surrounding optically thick matter reprocesses the disc’s X-ray emission and emits it from a large photosphere. If accretion follows the super-Eddington mass infall rate, it would inevitably result in an energetic outflow, providing naturally the reprocessing matter. We describe here a new method to estimate, using the observed luminosity and temperature, the mass and energy of outflows from optical transients. When applying this method to a sample of supernovae, our estimates are consistent with a more detailed hydrodynamic modelling. For the current sample of a few dozen optical TDEs, the observed luminosity and temperature imply outflows that are significantly more massive than typical stellar masses, posing a problem to this common reprocessing picture.


2021 ◽  
Vol 922 (2) ◽  
pp. 91
Author(s):  
Yanli Qiu ◽  
Hua Feng

Abstract Most ultraluminous X-ray sources (ULXs) are argued to be powered by supercritical accretion onto compact objects. One of the key questions regarding these objects is whether or not the hard X-rays are geometrically beamed toward the symmetric axis. We propose testing the scenario using disk irradiation to see how much the outer accretion disk sees the central hard X-rays. We collect a sample of 11 bright ULXs with an identification of a unique optical counterpart, and model their optical fluxes considering two irradiating sources: soft X-rays from the photosphere of the optically thick wind driven by supercritical accretion, and if needed in addition, hard X-rays from the Comptonization component. Our results indicate that the soft X-ray irradiation can account for the optical emission in the majority of ULXs, and the fraction of hard X-rays reprocessed on the outer disk is constrained to be no more than ∼10−2 in general. Such an upper limit is well consistent with the irradiation fraction expected in the case of no beaming. Therefore, no stringent constraint on the beaming effect can be placed according to the current data quality.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
A. Teymurazyan ◽  
G. Pang

A Monte Carlo simulation was used to study imaging and dosimetric characteristics of a novel design of megavoltage (MV) X-ray detectors for radiotherapy applications. The new design uses Cerenkov effect to convert X-ray energy absorbed in optical fibres into light for MV X-ray imaging. The proposed detector consists of a matrix of optical fibres aligned with the incident X rays and coupled to an active matrix flat-panel imager (AMFPI) for image readout. Properties, such as modulation transfer function, detection quantum efficiency (DQE), and energy response of the detector, were investigated. It has been shown that the proposed detector can have a zero-frequency DQE more than an order of magnitude higher than that of current electronic portal imaging device (EPID) systems and yet a spatial resolution comparable to that of video-based EPIDs. The proposed detector is also less sensitive to scattered X rays from patients than current EPIDs.


Sign in / Sign up

Export Citation Format

Share Document