scholarly journals Tidally induced stellar oscillations: converting modelled oscillations excited by hot Jupiters into observables

2020 ◽  
Vol 500 (2) ◽  
pp. 2711-2731
Author(s):  
Andrew Bunting ◽  
Caroline Terquem

ABSTRACT We calculate the conversion from non-adiabatic, non-radial oscillations tidally induced by a hot Jupiter on a star to observable spectroscopic and photometric signals. Models with both frozen convection and an approximation for a perturbation to the convective flux are discussed. Observables are calculated for some real planetary systems to give specific predictions. The photometric signal is predicted to be proportional to the inverse square of the orbital period, P−2, as in the equilibrium tide approximation. However, the radial velocity signal is predicted to be proportional to P−1, and is therefore much larger at long orbital periods than the signal corresponding to the equilibrium tide approximation, which is proportional to P−3. The prospects for detecting these oscillations and the implications for the detection and characterization of planets are discussed.

2020 ◽  
Vol 639 ◽  
pp. A130
Author(s):  
C. Obermeier ◽  
J. Steuer ◽  
H. Kellermann ◽  
R. P. Saglia ◽  
Th. Henning ◽  
...  

Hot Jupiters seem to get rarer with decreasing stellar mass. The goal of the Pan-Planets transit survey was the detection of such planets and a statistical characterization of their frequency. Here, we announce the discovery and validation of two planets found in that survey, Wendelstein-1b and Wendelstein-2b, which are two short-period hot Jupiters that orbit late K host stars. We validated them both by the traditional method of radial velocity measurements with the HIgh Resolution Echelle Spectrometer and the Habitable-zone Planet Finder instruments and then by their Transit Color Signature (TraCS). We observed the targets in the wavelength range of 4000−24 000 Å and performed a simultaneous multiband transit fit and additionally determined their thermal emission via secondary eclipse observations. Wendelstein-1b is a hot Jupiter with a radius of 1.0314−0.0061+0.0061 RJ and mass of 0.592−0.129+0.0165 MJ, orbiting a K7V dwarf star at a period of 2.66 d, and has an estimated surface temperature of about 1727−90+78 K. Wendelstein-2b is a hot Jupiter with a radius of 1.1592−0.0210+0.0204 RJ and a mass of 0.731−0.311+0.0541 MJ, orbiting a K6V dwarf star at a period of 1.75 d, and has an estimated surface temperature of about 1852−140+120 K. With this, we demonstrate that multiband photometry is an effective way of validating transiting exoplanets, in particular for fainter targets since radial velocity follow-up becomes more and more costly for those targets.


2019 ◽  
Vol 490 (2) ◽  
pp. 2467-2474
Author(s):  
L Y Temple ◽  
C Hellier ◽  
D R Anderson ◽  
K Barkaoui ◽  
F Bouchy ◽  
...  

ABSTRACT We report the discovery and characterization of WASP-180Ab, a hot Jupiter confirmed by the detection of its Doppler shadow and by measuring its mass using radial velocities. We find the 0.9  ±  0.1 MJup, 1.24  ±  0.04 RJup planet to be in a misaligned, retrograde orbit around an F7 star with Teff  =  6500 K and a moderate rotation speed of vsin i⋆  =  19.9 km s−1. The host star is the primary of a V  =  10.7 binary, where a secondary separated by ∼5 arcsec (∼1200 au) contributes ∼ 30 per cent of the light. WASP-180Ab therefore adds to a small sample of transiting hot Jupiters known in binary systems. A 4.6-d modulation seen in the WASP data is likely to be the rotational modulation of the companion star, WASP-180B.


2016 ◽  
Vol 12 (S328) ◽  
pp. 308-314
Author(s):  
K. Poppenhaeger

AbstractThe architecture of many exoplanetary systems is different from the solar system, with exoplanets being in close orbits around their host stars and having orbital periods of only a few days. We can expect interactions between the star and the exoplanet for such systems that are similar to the tidal interactions observed in close stellar binary systems. For the exoplanet, tidal interaction can lead to circularization of its orbit and the synchronization of its rotational and orbital period. For the host star, it has long been speculated if significant angular momentum transfer can take place between the planetary orbit and the stellar rotation. In the case of the Earth-Moon system, such tidal interaction has led to an increasing distance between Earth and Moon. For stars with Hot Jupiters, where the orbital period of the exoplanet is typically shorter than the stellar rotation period, one expects a decreasing semimajor axis for the planet and enhanced stellar rotation, leading to increased stellar activity. Also excess turbulence in the stellar convective zone due to rising and subsiding tidal bulges may change the magnetic activity we observe for the host star. I will review recent observational results on stellar activity and tidal interaction in the presence of close-in exoplanets, and discuss the effects of enhanced stellar activity on the exoplanets in such systems.


2020 ◽  
Vol 638 ◽  
pp. A5 ◽  
Author(s):  
I. Carleo ◽  
L. Malavolta ◽  
A. F. Lanza ◽  
M. Damasso ◽  
S. Desidera ◽  
...  

Context. The existence of hot Jupiters is still not well understood. Two main channels are thought to be responsible for their current location: a smooth planet migration through the protoplanetary disk or the circularization of an initial highly eccentric orbit by tidal dissipation leading to a strong decrease in the semimajor axis. Different formation scenarios result in different observable effects, such as orbital parameters (obliquity and eccentricity) or frequency of planets at different stellar ages. Aims. In the context of the GAPS Young Objects project, we are carrying out a radial velocity survey with the aim of searching and characterizing young hot-Jupiter planets. Our purpose is to put constraints on evolutionary models and establish statistical properties, such as the frequency of these planets from a homogeneous sample. Methods. Since young stars are in general magnetically very active, we performed multi-band (visible and near-infrared) spectroscopy with simultaneous GIANO-B + HARPS-N (GIARPS) observing mode at TNG. This helps in dealing with stellar activity and distinguishing the nature of radial velocity variations: stellar activity will introduce a wavelength-dependent radial velocity amplitude, whereas a Keplerian signal is achromatic. As a pilot study, we present here the cases of two known hot Jupiters orbiting young stars: HD 285507 b and AD Leo b. Results. Our analysis of simultaneous high-precision GIARPS spectroscopic data confirms the Keplerian nature of the variation in the HD 285507 radial velocities and refines the orbital parameters of the hot Jupiter, obtaining an eccentricity consistent with a circular orbit. Instead, our analysis does not confirm the signal previously attributed to a planet orbiting AD Leo. This demonstrates the power of the multi-band spectroscopic technique when observing active stars.


2019 ◽  
Vol 622 ◽  
pp. A71 ◽  
Author(s):  
C. von Essen ◽  
M. Mallonn ◽  
L. Welbanks ◽  
N. Madhusudhan ◽  
A. Pinhas ◽  
...  

There has been increasing progress toward detailed characterization of exoplanetary atmospheres, in both observations and theoretical methods. Improvements in observational facilities and data reduction and analysis techniques are enabling increasingly higher quality spectra, especially from ground-based facilities. The high data quality also necessitates concomitant improvements in models required to interpret such data. In particular, the detection of trace species such as metal oxides has been challenging. Extremely irradiated exoplanets (~3000 K) are expected to show oxides with strong absorption signals in the optical. However, there are only a few hot Jupiters where such signatures have been reported. Here we aim to characterize the atmosphere of the ultra-hot Jupiter WASP-33 b using two primary transits taken 18 orbits apart. Our atmospheric retrieval, performed on the combined data sets, provides initial constraints on the atmospheric composition of WASP-33 b. We report a possible indication of aluminum oxide (AlO) at 3.3-σ significance. The data were obtained with the long slit OSIRIS spectrograph mounted at the 10-m Gran Telescopio Canarias. We cleaned the brightness variations from the light curves produced by stellar pulsations, and we determined the wavelength-dependent variability of the planetary radius caused by the atmospheric absorption of stellar light. A simultaneous fit to the two transit light curves allowed us to refine the transit parameters, and the common wavelength coverage between the two transits served to contrast our results. Future observations with HST as well as other large ground-based facilities will be able to further constrain the atmospheric chemical composition of the planet.


2010 ◽  
Vol 6 (S276) ◽  
pp. 243-247
Author(s):  
Nawal Husnoo ◽  
Frédéric Pont ◽  
Tsevi Mazeh ◽  
Daniel Fabrycky ◽  
Guillaume Hébrard ◽  
...  

AbstractMost short period transiting exoplanets have circular orbits, as expected from an estimation of the circularisation timescale using classical tidal theory. Interestingly, a small number of short period transiting exoplanets seem to have orbits with a small eccentricity. Such systems are valuable as they may indicate that some key physics is missing from formation and evolution models. We have analysed the results of a campaign of radial velocity measurements of known transiting planets with the SOPHIE and HARPS spectrographs using Bayesian methods and obtained new constraints on the orbital elements of 12 known transiting exoplanets. We also reanalysed the radial velocity data for another 42 transiting systems and show that some of the eccentric orbits reported in the Literature are compatible with a circular orbit. As a result, we show that the systems with circular and eccentric orbits are clearly separated on a plot of the planetary mass versus orbital period. We also show that planets following the trend where heavier hot Jupiters have shorter orbital periods (the “mass-period relation” of hot Jupiters), also tend to have circular orbits, with no confirmed exception to this rule so far.


2017 ◽  
Vol 468 (4) ◽  
pp. 4772-4781 ◽  
Author(s):  
A. Suárez Mascareño ◽  
R. Rebolo ◽  
J. I. González Hernández ◽  
M. Esposito

2020 ◽  
Vol 72 (1) ◽  
Author(s):  
Taichi Kato

Abstract The post-outburst rebrightening phenomenon in dwarf novae and X-ray novae is still one of the most challenging subjects for theories of accretion disks. It has been widely recognized that post-outburst rebrightenings are a key feature of WZ Sge-type dwarf novae, which predominantly have short (≲0.06 d) orbital periods. The author found four post-outburst rebrightenings in ASASSN-14ho during its 2014 outburst, whose orbital period was recently measured to be exceptionally long [0.24315(10) d]. Using the formal solution of the radial velocity study in the literature, this paper discusses the possibility that this object could be an SU UMa-type dwarf nova near the stability border of the 3 : 1 resonance, despite its exceptionally long orbital period. Such objects are considered to be produced if mass transfer occurs after the secondary has undergone significant nuclear evolution, and they may be hidden in a significant number of dwarf novae showing multiple post-outburst rebrightenings.


2019 ◽  
Vol 486 (2) ◽  
pp. 2265-2280 ◽  
Author(s):  
Jean Teyssandier ◽  
Dong Lai ◽  
Michelle Vick

Abstract The population of giant planets on short-period orbits can potentially be explained by some flavours of high-eccentricity migration. In this paper, we investigate one such mechanism involving ‘secular chaos’, in which secular interactions between at least three giant planets push the inner planet to a highly eccentric orbit, followed by tidal circularization and orbital decay. In addition to the equilibrium tidal friction, we incorporate dissipation due to dynamical tides that are excited inside the giant planet. Using the method of Gaussian rings to account for planet–planet interactions, we explore the conditions for extreme eccentricity excitation via secular chaos and the properties of hot Jupiters formed in this migration channel. Our calculations show that once the inner planet reaches a sufficiently large eccentricity, dynamical tides quickly dissipate the orbital energy, producing an eccentric warm Jupiter, which then decays in semimajor axis through equilibrium tides to become a hot Jupiter. Dynamical tides help the planet avoid tidal disruption, increasing the chance of forming a hot Jupiter, although not all planets survive the process. We find that the final orbital periods generally lie in the range of 2–3 d, somewhat shorter than those of the observed hot Jupiter population. We couple the planet migration to the stellar spin evolution to predict the final spin-orbit misalignments. The distribution of the misalignment angles we obtain shows a lack of retrograde orbits compared to observations. Our results suggest that high-eccentricity migration via secular chaos can only account for a fraction of the observed hot Jupiter population.


2020 ◽  
Vol 493 (4) ◽  
pp. 5928-5943
Author(s):  
L M Serrano ◽  
M Oshagh ◽  
H M Cegla ◽  
S C C Barros ◽  
N C Santos ◽  
...  

ABSTRACT The Rossiter–McLaughlin (RM) effect is the radial velocity signal generated when an object transits a rotating star. Stars rotate differentially and this affects the shape and amplitude of this signal, on a level that can no longer be ignored with precise spectrographs. Highly misaligned planets provide a unique opportunity to probe stellar differential rotation via the RM effect, as they cross several stellar latitudes. In this sense, WASP-7, and its hot Jupiter with a projected misalignment of ∼90°, is one of the most promising targets. The aim of this work is to understand if the stellar differential rotation is measurable through the RM signal for systems with a geometry similar to WASP-7. In this sense, we use a modified version of soap3.0 to explore the main hurdles that prevented the precise determination of the differential rotation of WASP-7. We also investigate whether the adoption of the next generation spectrographs, like ESPRESSO, would solve these issues. Additionally, we assess how instrumental and stellar noise influence this effect and the derived geometry of the system. We found that, for WASP-7, the white noise represents an important hurdle in the detection of the stellar differential rotation, and that a precision of at least 2 m s−1 or better is essential.


Sign in / Sign up

Export Citation Format

Share Document