scholarly journals To TDE or not to TDE: the luminous transient ASASSN-18jd with TDE-like and AGN-like qualities

2020 ◽  
Vol 494 (2) ◽  
pp. 2538-2560 ◽  
Author(s):  
J M M Neustadt ◽  
T W-S Holoien ◽  
C S Kochanek ◽  
K Auchettl ◽  
J S Brown ◽  
...  

ABSTRACT We present the discovery of ASASSN-18jd (AT 2018bcb), a luminous optical/ultraviolet(UV)/X-ray transient located in the nucleus of the galaxy 2MASX J22434289–1659083 at z = 0.1192. Over the year after discovery, Swift UltraViolet and Optical Telescope (UVOT) photometry shows the UV spectral energy distribution of the transient to be well modelled by a slowly shrinking blackbody with temperature $T \sim 2.5 \times 10^{4} \, {\rm K}$, a maximum observed luminosity of $L_{\rm max} = 4.5^{+0.6}_{-0.3}\times 10^{44} \, {\rm erg \,s}^{-1}$, and a radiated energy of $E = 9.6^{+1.1}_{-0.6} \times 10^{51} \, {\rm erg}$. X-ray data from Swift X-Ray Telescope (XRT) and XMM–Newton show a transient, variable X-ray flux with blackbody and power-law components that fade by nearly an order of magnitude over the following year. Optical spectra show strong, roughly constant broad Balmer emission and transient features attributable to He ii, N iii–v, O iii, and coronal Fe. While ASASSN-18jd shares similarities with tidal disruption events (TDEs), it is also similar to the newly discovered nuclear transients seen in quiescent galaxies and faint active galactic nuclei (AGNs).

2019 ◽  
Vol 489 (1) ◽  
pp. 663-680 ◽  
Author(s):  
M Brescia ◽  
M Salvato ◽  
S Cavuoti ◽  
T T Ananna ◽  
G Riccio ◽  
...  

ABSTRACT With the launch of eROSITA (extended Roentgen Survey with an Imaging Telescope Array), successfully occurred on 2019 July 13, we are facing the challenge of computing reliable photometric redshifts for 3 million of active galactic nuclei (AGNs) over the entire sky, having available only patchy and inhomogeneous ancillary data. While we have a good understanding of the photo-z quality obtainable for AGN using spectral energy distribution (SED)-fitting technique, we tested the capability of machine learning (ML), usually reliable in computing photo-z for QSO in wide and shallow areas with rich spectroscopic samples. Using MLPQNA as example of ML, we computed photo-z for the X-ray-selected sources in Stripe 82X, using the publicly available photometric and spectroscopic catalogues. Stripe 82X is at least as deep as eROSITA will be and wide enough to include also rare and bright AGNs. In addition, the availability of ancillary data mimics what can be available in the whole sky. We found that when optical, and near- and mid-infrared data are available, ML and SED fitting perform comparably well in terms of overall accuracy, realistic redshift probability density functions, and fraction of outliers, although they are not the same for the two methods. The results could further improve if the photometry available is accurate and including morphological information. Assuming that we can gather sufficient spectroscopy to build a representative training sample, with the current photometry coverage we can obtain reliable photo-z for a large fraction of sources in the Southern hemisphere well before the spectroscopic follow-up, thus timely enabling the eROSITA science return. The photo-z catalogue is released here.


2004 ◽  
Vol 616 (1) ◽  
pp. 147-156 ◽  
Author(s):  
C. Martin Gaskell ◽  
Rene W. Goosmann ◽  
Robert R. J. Antonucci ◽  
David H. Whysong

2020 ◽  
Vol 638 ◽  
pp. A45
Author(s):  
V. A. Masoura ◽  
I. Georgantopoulos ◽  
G. Mountrichas ◽  
C. Vignali ◽  
E. Koulouridis ◽  
...  

The combination of optical and mid-infrared (MIR) photometry has been extensively used to select red active galactic nuclei (AGNs). Our aim is to explore the obscuration properties of these red AGNs with both X-ray spectroscopy and spectral energy distributions (SEDs). In this study, we re-visit the relation between optical/MIR extinction and X-ray absorption. We use IR selection criteria, specifically the W1 and W2 WISE bands, to identify 4798 AGNs in the XMM-XXL area (∼25 deg2). Application of optical/MIR colours (r−W2 >  6) reveals 561 red AGNs (14%). Of these, 47 have available X-ray spectra with at least 50 net (background-subtracted) counts per detector. For these sources, we construct SEDs from the optical to the MIR using the CIGALE code. The SED fitting shows that 44 of these latter 47 sources present clear signs of obscuration based on the AGN emission and the estimated inclination angle. Fitting the SED also reveals ten systems (∼20%) which are dominated by the galaxy. In these cases, the red colours are attributed to the host galaxy rather than AGN absorption. Excluding these ten systems from our sample and applying X-ray spectral fitting analysis shows that up to 76% (28/37) of the IR red AGNs present signs of X-ray absorption. Thus, there are nine sources (∼20% of the sample) that although optically red, are not substantially X-ray absorbed. Approximately 50% of these sources present broad emission lines in their optical spectra. We suggest that the reason for this apparent discrepancy is that the r−W2 criterion is sensitive to smaller amounts of obscuration relative to the X-ray spectroscopy. In conclusion, it appears that the majority of red AGNs present considerable obscuration levels as shown by their SEDs. Their X-ray absorption is moderate with a mean of NH ∼ 1022 cm−2.


2020 ◽  
Vol 643 ◽  
pp. L7
Author(s):  
S. Komossa ◽  
D. Grupe ◽  
L. C. Gallo ◽  
P. Poulos ◽  
D. Blue ◽  
...  

Context. The narrow-line Seyfert 1 galaxy Mrk 335 was one of the X-ray brightest active galactic nuclei, but it has systematically faded since 2007. Aims. We report the discovery with Swift of a sequence of bright and rapid X-ray flare events that reveal the emergence of Mrk 335 from its ultra-deep multiyear low state. Methods. Results are based on our dedicated multiyear monitoring of Mrk 335 with Swift. Results. Unlike other bright active galactic nuclei, the optical–UV is generally not correlated with the X-rays in Mrk 335 on a timescale of days to months. This fact either implies the absence of a direct link between the two emission components; or else implies that the observed X-rays are significantly affected by (dust-free) absorption along our line of sight. The UV and optical, however, are closely correlated at the 99.99% confidence level. The UV is leading the optical by Δt = 1.5 ± 1.5 d. The Swift X-ray spectrum shows strong deviations from a single power law in all brightness states of the outbursts, indicating that significant absorption or reprocessing is taking place. Mrk 335 displays a softer-when-brighter variability pattern at intermediate X-ray count rates, which has been seen in our Swift data since 2007 (based on a total of 590 observations). This pattern breaks down at the highest and lowest count rates. Conclusions. We interpret the 2020 brightening of Mrk 335 as a decrease in column density and covering factor of a partial-covering absorber along our line of sight in the form of a clumpy accretion-disk wind that reveals an increasing portion of the intrinsic emission of Mrk 335 from the disk and/or corona region, while the optical emission-line regions receive a less variable spectral energy distribution. This then also explains why Mrk 335 was never seen to change its optical Seyfert type (not “changing look”) despite its factor ∼50 X-ray variability with Swift.


2020 ◽  
Vol 494 (4) ◽  
pp. 5917-5922 ◽  
Author(s):  
G J Ferland ◽  
C Done ◽  
C Jin ◽  
H Landt ◽  
M J Ward

ABSTRACT The great power offered by photoionization models of active galactic nuclei emission line regions has long been mitigated by the fact that very little is known about the spectral energy distribution (SED) between the Lyman limit, where intervening absorption becomes a problem, and  0.3 keV, where soft X-ray observations become possible. The emission lines themselves can, to some degree, be used to probe the SED, but only in the broadest terms. This paper employs a new generation of theoretical SEDs that are internally self-consistent, energy conserving, and tested against observations, to infer properties of the emission-line regions. The SEDs are given as a function of the Eddington ratio, allowing emission-line correlations to be investigated on a fundamental basis. We apply the simplest possible tests, based on the foundations of photoionization theory, to investigate the implications for the geometry of the emission-line region. The SEDs become more far-ultraviolet bright as the Eddington ratio increases, so the equivalent widths of recombination lines should also become larger, an effect that we quantify. The observed lack of correlation between Eddington ratio and equivalent width shows that the cloud covering factor must decrease as Eddington ratio increases. This would be consistent with recent models proposing that the broad-line region is a failed dusty wind off the accretion disc.


2020 ◽  
Vol 497 (1) ◽  
pp. 192-203
Author(s):  
Wei Jeat Hon ◽  
Rachel Webster ◽  
Christian Wolf

ABSTRACT Changing look active galactic nuclei (CLAGNs) are rare cases of AGNs, where the continuum flux increases/decreases and the broad emission lines appear/disappear within short time-scales. These extreme changes challenge our understanding of accretion disc dynamics. We present a sample of four new CLAGNs at 0.026 < z < 0.107, which were found by cross-matching the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey with AGNs from the SDSS spectroscopic data base. Our results show that the selection criteria of $\gt \mathopen |0.5\mathclose |$ mag change in SDSS-g band is ineffective at lower redshifts. This is, in part, due to the fact that the g band is probing a different part of the AGNs spectral energy distribution at these redshifts. The bigger issue is that the galaxy continuum dominates the spectrum and thus overwhelms any variation of the AGNs continuum that might contribute to photometric variations. This suggests the need to use different methods for future low-redshift CLAGNs searches.


2021 ◽  
Vol 81 (12) ◽  
Author(s):  
Misbah Shahzadi ◽  
Martin Kološ ◽  
Zdeněk Stuchlík ◽  
Yousaf Habib

AbstractThe study of the quasi-periodic oscillations (QPOs) of X-ray flux observed in the stellar-mass black hole (BH) binaries or quasars can provide a powerful tool for testing the phenomena occurring in strong gravity regime. We thus fit the data of QPOs observed in the well known microquasars as well as active galactic nuclei (AGNs) in the framework of the model of geodesic oscillations of Keplerian disks modified for the epicyclic oscillations of spinning test particles orbiting Kerr BHs. We show that the modified geodesic models of QPOs can explain the observational fixed data from the microquasars and AGNs but not for all sources. We perform a successful fitting of the high frequency QPOs models of epicyclic resonance and its variants, relativistic precession and its variants, tidal disruption, as well as warped disc models, and discuss the corresponding constraints of parameters of the model, which are the spin of the test particle, mass and rotation of the BH.


Sign in / Sign up

Export Citation Format

Share Document