Inelastic scattering of interstellar silyl cyanide (SiH3CN) by helium atoms : cross-sections and rate coefficients for A- and E-SiH3CN

2021 ◽  
Vol 507 (4) ◽  
pp. 5264-5271
Author(s):  
Manel Naouai ◽  
Abdelhak Jrad ◽  
Ayda Badri ◽  
Faouzi Najar

ABSTRACT Rotational inelastic scattering of silyl cyanide (SiH3CN) molecule with helium (He) atoms is investigated. Three-dimensional potential energy surface (3D-PES) for the SiH3CN–He interacting system is carried out. The ab initio 3D-PES is computed using explicitly correlated coupled cluster approach with single, double, and perturbative triple excitation CCSD(T)-F12a connected to augmented-correlation consistent-polarized valence triple zeta Gaussian basis set. A global minimum at (R = 6.35 bohr; θ = 90○; ϕ = 60○) with a well depth of 52.99 cm−1 is pointed out. Inelastic rotational cross-sections are emphasized for the 22 first rotational levels for total energy up to 500 cm−1 via close coupling (CC) approach in the case of A-SiH3CN and for the 24 first rotational levels for total energy up to 100 cm−1 via CC and from 100 to 500 cm−1 via coupled states (CS) in the case of E-SiH3CN. Rate coefficients are derived for temperature until 80 K for both A- and E-SiH3CN–He systems. Propensity rules are obtained for |ΔJ| = 2 processes with broken parity for A-SiH3CN and for |ΔJ| = 2 processes with |ΔK| = 0 and unbroken parity for E-SiH3CN.

2019 ◽  
Vol 487 (4) ◽  
pp. 5685-5691 ◽  
Author(s):  
Cheikh T Bop

ABSTRACT Sulphur bearing nitrogenous compounds have been observed in space over this last decade. Modelling their abundances has been done using rate coefficients of isoelectronic molecules. In order to satisfy the astrophysical precision required, we report the actual rate coefficients of NS+ induced by collision with the most abundant interstellar species (para-H2). Considering the 23 low-lying rotational levels of NS+, we were able to compute the (hyperfine) rate coefficients up to 100 K. These latter were carried out by averaging cross-sections over the Maxwell–Boltzmann velocity distribution. The state-to-state inelastic cross-sections were determined in the quantum mechanical close coupling approach for total energies ranging up to 1400 cm−1. These dynamic data result from a four dimensional potential energy surface (4D-PES) which was spherically averaged over the H2 orientations. The 4D-PES was calculated using the explicitly correlated coupled cluster method with simple, double, and non-iterative triple excitation (CCSD(T)–F12) connected to the augmented–correlation consistent–polarized valence triple zeta Gaussian basis set (aug–cc–pVTZ). The so-averaged PES presents a very deep well of 596.72 cm−1 at R = 5.94 a0 and θ1 = 123.20°. Discussions on the propensity rules for the (hyperfine) rate coefficients were made and they are in favour of (Δj = ΔF) Δj = 1 transitions. The results presented here may be crucially needed in order to accurately model the NS+ abundance in space. In addition, we expect that this paper will encourage investigations on the sulphur bearing nitrogenous compounds.


2020 ◽  
Vol 494 (4) ◽  
pp. 5675-5681 ◽  
Author(s):  
Sanchit Chhabra ◽  
T J Dhilip Kumar

ABSTRACT Molecular ions play an important role in the astrochemistry of interstellar and circumstellar media. C3H+ has been identified in the interstellar medium recently. A new potential energy surface of the C3H+–He van der Waals complex is computed using the ab initio explicitly correlated coupled cluster with the single, double and perturbative triple excitation [CCSD(T)-F12] method and the augmented correlation consistent polarized valence triple zeta (aug-cc-pVTZ) basis set. The potential presents a well of 174.6 cm−1 in linear geometry towards the H end. Calculations of pure rotational excitation cross-sections of C3H+ by He are carried out using the exact quantum mechanical close-coupling approach. Cross-sections for transitions among the rotational levels of C3H+ are computed for energies up to 600 cm−1. The cross-sections are used to obtain the collisional rate coefficients for temperatures T ≤ 100 K. Along with laboratory experiments, the results obtained in this work may be very useful for astrophysical applications to understand hydrocarbon chemistry.


Author(s):  
Christian Balança ◽  
Ernesto Quintas-Sánchez ◽  
Richard Dawes ◽  
Fabien Dumouchel ◽  
François Lique ◽  
...  

Abstract Carbon-chain anions were recently detected in the interstellar medium. These very reactive species are used as tracers of the physical and chemical conditions in a variety of astrophysical environments. However, the Local Thermodynamical Equilibrium conditions are generally not fulfilled in these environments. Therefore, collisional as well as radiative rates are needed to accurately model the observed emission lines. We determine in this work the state-to-state rate coefficients of C4H− in collision with both ortho- and para-H2. A new ab initio 4D potential energy surface was computed using explicitly-correlated coupled cluster procedures. This surface was then employed to determine rotational excitation and de-excitation cross sections and rate coefficients for the first 21 rotational levels (up to rotational level j1 = 20) using the close-coupling method, while the coupled-state approximation was used to extend the calculations up to j1 = 30. State-to-state rate coefficients were obtained for the temperature range 2–100 K. The differences between the ortho- and para-H2 rate coefficients are found to be small.


2020 ◽  
Vol 498 (4) ◽  
pp. 5159-5165
Author(s):  
F Khadri ◽  
A Chefai ◽  
K Hammami

ABSTRACT The C5S molecule is the largest member of the series of sulphur-containing carbon chains CnS observed in space. Given the lack of data concerning this molecule, we computed rate coefficients of C5S(1Σ+) induced by collision with He. These rates are obtained for thermal temperature below 100 K by mean of a new two-dimensional potential energy surface (PES) calculated with the explicit correlated coupled cluster with single, double, and pertubative triple excitation (ccsd(t)-f12) ab initio approach and the aug-cc-pVTZ basis sets. The C5S–He PES presents three minimums of −59.726, −55.355, and −36.506 cm−1 below its dissociation limit. Using this PES, the integral cross-sections are performed in the close-coupling (CC) and coupled-state (CS) quantum time independent formalisms for $E_\mathrm{ c}\le 500 \, \mathrm{ cm}^{-1}$ and J ≤ 13 (for CC) and J ≤ 50 (for CS). By averaging these cross-sections we obtained the downward rate coefficients. The new collisional data are used to simulate the excitation of C5S in the circumstellar gas. We obtain the excitation and brightness temperatures of the four lines observed towards the IRC+10216 which confirms the necessity of using radiative transfer calculations to accurately determine C5S abundance since the local thermodynamic equilibrium conditions are not fulfilled. The new collisional data should help to estimate the abundance of C5S in several interstellar regions.


2020 ◽  
Vol 638 ◽  
pp. A31
Author(s):  
Otoniel Denis-Alpizar ◽  
Thierry Stoecklin

Context. The H2S molecule has been detected in several regions of the interstellar medium (ISM). The use of non-LTE models requires knowledge of accurate collisional rate coefficients of the molecules detected with the most common collider in the ISM. Aims. The main goal of this work is to study the collision of H2S with He. Methods. A grid of ab initio energies was computed at the coupled cluster level of theory including single, double, and perturbative triple excitations (CCSD(T)) and using the augmented correlation consistent polarized quadruple zeta (aug-cc-pVQZ) basis set supplemented by a set of mid-bond functions. These energies were fitted to an analytical function, which was employed to study the dynamics of the system. Close coupling calculations were performed to study the collision of H2S with He. Results. The rate coefficients determined from the close coupling calculation were compared with those of the collision with H2O+He, and large differences were found. Finally, the rate coefficients for the lower rotational de-excitation of H2S by collision with He are reported.


2020 ◽  
Vol 498 (4) ◽  
pp. 5361-5366
Author(s):  
Paul J Dagdigian

ABSTRACT This paper addresses the need for accurate rate coefficients for transitions between fine- and hyperfine-structure resolved rotational transitions in the formyl (HCO) radical induced by collisions with the two nuclear spin modifications of H2, the dominant molecule in the interstellar medium (ISM). These rate coefficients, as well as radiative transition rate coefficients, are required for accurate determination of the abundance of HCO in the ISM. Time-independent close-coupling quantum scattering calculations have been used to compute rate coefficients for (de-)excitation of HCO in collisions with para- and ortho-H2. These calculations utilized a potential energy surface for the interaction of HCO with H2 recently computed by the explicitly correlated RCCSD(T)-F12a coupled-cluster method. Rate coefficients for temperatures ranging from 5 to 400 K were calculated for all transitions among the fine and hyperfine levels associated with the first 22 rotational levels of HCO, whose energies are less than or equal to 144 K.


2019 ◽  
Vol 489 (3) ◽  
pp. 4322-4328
Author(s):  
C Gharbi ◽  
Y Ajili ◽  
D Ben Abdallah ◽  
M Mogren Al Mogren ◽  
M Hochlaf

ABSTRACT Cyanides/isocyanides are the most common metal-containing molecules in interstellar medium. In this work, quantum scattering calculations were carried out to determine the rotational (de-)excitation cross-sections of the most stable form of the sodium cyanide molecule, t-NaCN, in collision with the helium atom. Rate coefficients for the first 43 rotational levels (up to ${j_{{K_a}{K_c}}}$ = 63,3) of NaCN were determined for kinetic temperatures ranging from 1 to 30 K. Prior to that, we constructed a new three-dimensional potential energy surface (3D-PES) for the t-NaCN–He interacting system. These electronic structure computations are done at the CCSD(T)-F12/aug-cc-pVTZ level of theory. Computations show the dominance of Δj = ΔKc = −1 transitions, which is related to the dissymmetric shape of the t-NaCN–He 3D-PES. The NaCN–He rate coefficients are of the same order of magnitude (∼10−11 cm3.s−1) as those of other metal CN-containing molecules such as MgCN and AlCN in collision with He. This work is a contribution for understanding and modelling the abundances and chemistry of nitriles in astrophysical media.


2020 ◽  
Vol 494 (1) ◽  
pp. 129-134
Author(s):  
L D Cabrera-González ◽  
D Páez-Hernández ◽  
O Denis-Alpizar

ABSTRACT The first tentative detection of the nitrosylium ion (NO+) in the interstellar medium (ISM) was reported just a few years ago. The application of non-local thermal equilibrium models requires the knowledge of the collisional rate coefficients with the most common colliders in the ISM (e.g. He, H, H2, and e). The main goals of this paper are to study the collision of the NO+ molecule with para-H2 (j = 0) and report the rate coefficients for the lower rotational states of NO+. A large set of ab initio energies was computed at the CCSD(T)/aug-cc-pV5Z level of theory. A new potential energy surface averaged over the H2 orientations was then fitted using a reproducing kernel Hilbert space procedure. The state-to-state cross-sections of NO++para-H2 (j = 0) for the first 18 rotational levels were computed using the close-coupling method. The rotational rate coefficients of this system were compared with those for NO++He, and a different propensity rule was found. Furthermore, the hyperfine rate coefficients were also calculated using the infinite-order-sudden scaling procedure.


2020 ◽  
Vol 494 (4) ◽  
pp. 5239-5243
Author(s):  
Paul J Dagdigian

ABSTRACT Accurate estimates of the abundance of H2S, and inferences about the unmeasured H2 density, require accurate knowledge of radiative and collisional rate coefficients. Time-independent close-coupling quantum scattering calculations have been employed to compute rate coefficients for (de-)excitation of para- and ortho-H2S in collisions with para- and ortho-H2. These calculations utilized a potential energy surface for the interaction of H2S with H2 recently computed by the explicitly correlated CCSD(T)-F12a coupled-cluster method. Rate coefficients for temperatures ranging from 5 to 500 K were calculated for all transitions among the first 19 rotational levels of H2S, whose energies are less than or equal to 405 K. These rate coefficients are compared with previous estimates of these quantities.


2020 ◽  
Vol 497 (4) ◽  
pp. 4276-4281 ◽  
Author(s):  
Otoniel Denis-Alpizar ◽  
Thierry Stoecklin ◽  
Anne Dutrey ◽  
Stéphane Guilloteau

ABSTRACT The HCO+ and DCO+ molecules are commonly used as tracers in the interstellar medium. Therefore, accurate rotational rate coefficients of these systems with He and H2 are crucial in non-local thermal equilibrium models. We determine in this work the rotational de-excitation rate coefficients of HCO+ in collision with both para- and ortho-H2, and also analyse the isotopic effects by studying the case of DCO+. A new four-dimensional potential energy surface from ab initio calculations was developed for the HCO+–H2 system, and adapted to the DCO+–H2 case. These surfaces are then employed in close-coupling calculations to determine the rotational de-excitation cross-sections and rate coefficients for the lower rotational states of HCO+ and DCO+. The new rate coefficients for HCO+ + para-H2 were compared with the available data, and a set of rate coefficients for HCO+ + ortho-H2 is also reported. The difference between the collision rates with ortho- and para-H2 is found to be small. These calculations confirm that the use of the rate coefficients for HCO+ + para-H2 for estimating those for HCO+ + ortho-H2 as well as for DCO+ + para-H2 is a good approximation.


Sign in / Sign up

Export Citation Format

Share Document