scholarly journals Cosmic rays and non-thermal emission in simulated galaxies: III. probing cosmic ray calorimetry with radio spectra and the FIR-radio correlation

Author(s):  
Maria Werhahn ◽  
Christoph Pfrommer ◽  
Philipp Girichidis

Abstract An extinction-free estimator of the star-formation rate (SFR) of galaxies is critical for understanding the high-redshift universe. To this end, the nearly linear, tight correlation of far-infrared (FIR) and radio luminosity of star-forming galaxies is widely used. While the FIR is linked to massive star formation, which also generates shock-accelerated cosmic ray (CR) electrons and radio synchrotron emission, a detailed understanding of the underlying physics is still lacking. Hence, we perform three-dimensional magneto-hydrodynamical (MHD) simulations of isolated galaxies over a broad range of halo masses and SFRs using the moving-mesh code Arepo, and evolve the CR proton energy density self-consistently. In post-processing, we calculate the steady-state spectra of primary, shock-accelerated and secondary CR electrons, which result from hadronic CR proton interactions with the interstellar medium. The resulting total radio luminosities correlate with the FIR luminosities as observed and are dominated by primary CR electrons if we account for anisotropic CR diffusion. The increasing contribution of secondary emission up to 30 per cent in starbursts is compensated by the larger bremsstrahlung and Coulomb losses. CR electrons are in the calorimetric limit and lose most of their energy through inverse Compton interactions with star-light and cosmic microwave background (CMB) photons while less energy is converted to synchrotron emission. This implies steep steady-state synchrotron spectra in starbursts. Interestingly, we find that thermal free–free emission flattens the total radio spectra at high radio frequencies and reconciles calorimetric theory with observations while free–free absorption explains the observed low-frequency flattening towards the central regions of starbursts.

Author(s):  
J H Yoon ◽  
C L Martin ◽  
S Veilleux ◽  
M Meléndez ◽  
T Mueller ◽  
...  

Abstract We present deep far-infrared observations of the nearby edge-on galaxy NGC 891 obtained with the Herschel Space Observatory and the Spitzer Space Telescope. The maps confirm the detection of thermal emission from the inner circumgalactic medium (halo) and spatially resolve a dusty superbubble and a dust spur (filament). The dust temperature of the halo component is lower than that of the disk but increases across a region of diameter ≈8.0 kpc extending at least 7.7 kpc vertically from one side of the disk, a region we call a superbubble because of its association with thermal X-ray emission and a minimum in the synchrotron scaleheight. This outflow is breaking through the thick disk and developing into a galactic wind, which is of particular interest because NGC 891 is not considered a starburst galaxy; the star formation rate surface density, 0.03M⊙ yr−1 kpc−2, and gas fraction, just $10\%$ in the inner disk, indicate the threshold for wind formation is lower than previous work has suggested. We conclude that the star formation surface density is sufficient for superbubble blowout into the halo, but the cosmic ray electrons may play a critical role in determining whether this outflow develops into a fountain or escapes from the gravitational potential. The high dust-to-gas ratio in the dust spur suggests the material was pulled out of NGC 891 through the collision of a minihalo with the disk of NGC 891. We conclude that NGC 891 offers an example of both feedback and satellite interactions transporting dust into the halo of a typical galaxy.


2018 ◽  
Vol 619 ◽  
pp. A15 ◽  
Author(s):  
M. Girard ◽  
M. Dessauges-Zavadsky ◽  
D. Schaerer ◽  
J. Richard ◽  
K. Nakajima ◽  
...  

Observations have shown that massive star-forming clumps are present in the internal structure of high-redshift galaxies. One way to study these clumps in detail with a higher spatial resolution is by exploiting the power of strong gravitational lensing which stretches images on the sky. In this work, we present an analysis of the clumpy galaxy A68-HLS115 at z = 1.5858, located behind the cluster Abell 68, but strongly lensed by a cluster galaxy member. Resolved observations with SINFONI/VLT in the near-infrared (NIR) show Hα, Hβ, [NII], and [OIII] emission lines. Combined with images covering the B band to the far-infrared (FIR) and CO(2–1) observations, this makes this galaxy one of the only sources for which such multi-band observations are available and for which it is possible to study the properties of resolved star-forming clumps and to perform a detailed analysis of the integrated properties, kinematics, and metallicity. We obtain a stability of υrot/σ0 = 2.73 by modeling the kinematics, which means that the galaxy is dominated by rotation, but this ratio also indicates that the disk is marginally stable. We find a high intrinsic velocity dispersion of 80 ± 10 km s−1 that could be explained by the high gas fraction of fgas = 0.75 ± 0.15 observed in this galaxy. This high fgas and the observed sSFR of 3.12 Gyr−1 suggest that the disk turbulence and instabilities are mostly regulated by incoming gas (available gas reservoir for star formation). The direct measure of the Toomre stability criterion of Qcrit = 0.70 could also indicate the presence of a quasi-stable thick disk. Finally, we identify three clumps in the Hα map which have similar velocity dispersions, metallicities, and seem to be embedded in the rotating disk. These three clumps contribute together to ∼40% on the SFRHα of the galaxy and show a star formation rate density about ∼100 times higher than HII regions in the local Universe.


2002 ◽  
Vol 12 ◽  
pp. 489-492 ◽  
Author(s):  
G.R. Meurer ◽  
T.M. Heckman ◽  
M. Seibert ◽  
J. Goldader ◽  
D. Calzetti ◽  
...  

AbstractMany recent estimates of the star formation rate density at high redshift rely on rest-frame ultraviolet (UV) data. These are highly sensitive to dust absorption. Applying a correlation between the far-infrared (FIR) to UV flux ratio and UV color found in local starbursts to galaxy samples out toz∼ 3, one can account for most of the FIR background. However, the correlation is based on a sample that does not include the most extreme starbursts, Ultra Luminous Infrared Galaxies (ULIGs). Our new UV images of ULIGs show that their FIR fluxes are underpredicted by this correlation by factors ranging from 7 to 70. We discuss how ULIGs compare to the various types of high-zgalaxies: sub-mm sources, Lyman Break Galaxies, and Extremely Red Objects.


2020 ◽  
Vol 499 (4) ◽  
pp. 5241-5256
Author(s):  
Cheng Cheng ◽  
Edo Ibar ◽  
Ian Smail ◽  
Juan Molina ◽  
David Sobral ◽  
...  

ABSTRACT We present Atacama Large Millimeter/Submillimeter Array (ALMA) continuum observations of a sample of nine star-forming galaxies at redshifts 1.47 and 2.23 selected from the High-z Emission Line Survey (HiZELS). Four galaxies in our sample are detected at high significance by ALMA at a resolution of 0${_{.}^{\prime\prime}}$25 at rest-frame 355 μm. Together with the previously observed H α emission, from adaptive optics-assisted integral-field-unit spectroscopy (∼0${_{.}^{\prime\prime}}$15 resolution), and F606W and F140W imaging from the Hubble Space Telescope (∼0${_{.}^{\prime\prime}}$2 resolution), we study the star formation activity, stellar and dust mass in these high-redshift galaxies at ∼kpc-scale resolution. We find that ALMA detection rates are higher for more massive galaxies (M* > 1010.5 M⊙) and higher [N ii]/H α ratios (>0.25, a proxy for gas-phase metallicity). The dust extends out to a radius of 8 kpc, with a smooth structure, even for those galaxies presenting clumpy H α morphologies. The half-light radii (Rdust) derived for the detected galaxies are of the order ∼4.5 kpc, more than twice the size of submillimetre-selected galaxies at a similar redshift. Our global star formation rate estimates – from far-infrared and extinction-corrected H α luminosities – are in good agreement. However, the different morphologies of the different phases of the interstellar medium suggest complex extinction properties of the high-redshift normal galaxies.


2022 ◽  
Vol 924 (2) ◽  
pp. 76
Author(s):  
Hiddo S. B. Algera ◽  
Jacqueline A. Hodge ◽  
Dominik A. Riechers ◽  
Sarah K. Leslie ◽  
Ian Smail ◽  
...  

Abstract Radio free–free emission is considered to be one of the most reliable tracers of star formation in galaxies. However, as it constitutes the faintest part of the radio spectrum—being roughly an order of magnitude less luminous than radio synchrotron emission at the GHz frequencies typically targeted in radio surveys—the usage of free–free emission as a star formation rate tracer has mostly remained limited to the local universe. Here, we perform a multifrequency radio stacking analysis using deep Karl G. Jansky Very Large Array observations at 1.4, 3, 5, 10, and 34 GHz in the COSMOS and GOODS-North fields to probe free–free emission in typical galaxies at the peak of cosmic star formation. We find that z ∼ 0.5–3 star-forming galaxies exhibit radio emission at rest-frame frequencies of ∼65–90 GHz that is ∼1.5–2 times fainter than would be expected from a simple combination of free–free and synchrotron emission, as in the prototypical starburst galaxy M82. We interpret this as a deficit in high-frequency synchrotron emission, while the level of free–free emission is as expected from M82. We additionally provide the first constraints on the cosmic star formation history using free–free emission at 0.5 ≲ z ≲ 3, which are in good agreement with more established tracers at high redshift. In the future, deep multifrequency radio surveys will be crucial in order to accurately determine the shape of the radio spectrum of faint star-forming galaxies, and to further establish radio free–free emission as a tracer of high-redshift star formation.


2020 ◽  
Vol 496 (4) ◽  
pp. 4405-4419
Author(s):  
Tiger Yu-Yang Hsiao ◽  
Tetsuya Hashimoto ◽  
Jia-Yuan Chang ◽  
Tomotsugu Goto ◽  
Seong Jin Kim ◽  
...  

ABSTRACT Gamma-ray bursts (GRBs) can be a promising tracer of cosmic star formation rate history (CSFRH). In order to reveal the CSFRH using GRBs, it is important to understand whether they are biased tracers or not. For this purpose, it is crucial to understand properties of GRB host galaxies, in comparison to field galaxies. In this work, we report ALMA far-infrared (FIR) observations of six z ∼ 2 IR-bright GRB host galaxies, which are selected for the brightness in IR. Among them, four host galaxies are detected for the first time in the rest-frame FIR. In addition to the ALMA data, we collected multiwavelength data from previous studies for the six GRB host galaxies. Spectral energy distribution fitting analyses were performed with cigale to investigate physical properties of the host galaxies, and to test whether active galactic nucleus (AGN) and radio components are required or not. Our results indicate that the best-fitting templates of five GRB host galaxies do not require an AGN component, suggesting the absence of AGNs. One GRB host galaxy, 080207, shows a very small AGN contribution. While derived stellar masses of the three host galaxies are mostly consistent with those in previous studies, interestingly the value of star formation rates (SFRs) of all six GRB hosts are inconsistent with previous studies. Our results indicate the importance of rest-frame FIR observations to correctly estimate SFRs by covering thermal emission from cold dust heated by star formation.


2020 ◽  
Vol 639 ◽  
pp. L13
Author(s):  
N. P. H. Nesvadba ◽  
G. V. Bicknell ◽  
D. Mukherjee ◽  
A. Y. Wagner

We present new, spatially resolved [CI]1–0, [CI]2–1, CO(7–6), and dust continuum observations of 4C 41.17 at z = 3.8. This is one of the best-studied radio galaxies in this epoch and is arguably the best candidate of jet-triggered star formation at high redshift currently known in the literature. 4C 41.17 shows a narrow ridge of dust continuum extending over 15 kpc near the radio jet axis. Line emission is found within the galaxy in the region with signatures of positive feedback. Using the [CI]1–0 line as a molecular gas tracer, and multifrequency observations of the far-infrared dust heated by star formation, we find a total gas mass of 7.6 × 1010 M⊙, which is somewhat greater than that previously found from CO(4–3). The gas mass surface density of 103 M⊙ yr−1 pc−2 and the star formation rate surface density of 10 M⊙ yr−1 kpc−2 were derived over the 12 kpc × 8 kpc area, where signatures of positive feedback have previously been found. These densities are comparable to those in other populations of massive, dusty star-forming galaxies in this redshift range, suggesting that the jet does not currently enhance the efficiency with which stars form from the gas. This is consistent with expectations from simulations, whereby radio jets may facilitate the onset of star formation in galaxies without boosting its efficiency over longer timescales, in particular after the jet has broken out of the interstellar medium, as is the case in 4C 41.17.


Author(s):  
Marta B. Silva ◽  
Ely D. Kovetz ◽  
Garrett K. Keating ◽  
Azadeh Moradinezhad Dizgah ◽  
Matthieu Bethermin ◽  
...  

AbstractThis paper outlines the science case for line-intensity mapping with a space-borne instrument targeting the sub-millimeter (microwaves) to the far-infrared (FIR) wavelength range. Our goal is to observe and characterize the large-scale structure in the Universe from present times to the high redshift Epoch of Reionization. This is essential to constrain the cosmology of our Universe and form a better understanding of various mechanisms that drive galaxy formation and evolution. The proposed frequency range would make it possible to probe important metal cooling lines such as [CII] up to very high redshift as well as a large number of rotational lines of the CO molecule. These can be used to trace molecular gas and dust evolution and constrain the buildup in both the cosmic star formation rate density and the cosmic infrared background (CIB). Moreover, surveys at the highest frequencies will detect FIR lines which are used as diagnostics of galaxies and AGN. Tomography of these lines over a wide redshift range will enable invaluable measurements of the cosmic expansion history at epochs inaccessible to other methods, competitive constraints on the parameters of the standard model of cosmology, and numerous tests of dark matter, dark energy, modified gravity and inflation. To reach these goals, large-scale structure must be mapped over a wide range in frequency to trace its time evolution and the surveyed area needs to be very large to beat cosmic variance. Only a space-borne mission can properly meet these requirements.


2020 ◽  
Vol 500 (3) ◽  
pp. 3394-3412
Author(s):  
Steven R Furlanetto

ABSTRACT In recent years, simple models of galaxy formation have been shown to provide reasonably good matches to available data on high-redshift luminosity functions. However, these prescriptions are primarily phenomenological, with only crude connections to the physics of galaxy evolution. Here, we introduce a set of galaxy models that are based on a simple physical framework but incorporate more sophisticated models of feedback, star formation, and other processes. We apply these models to the high-redshift regime, showing that most of the generic predictions of the simplest models remain valid. In particular, the stellar mass–halo mass relation depends almost entirely on the physics of feedback (and is thus independent of the details of small-scale star formation) and the specific star formation rate is a simple multiple of the cosmological accretion rate. We also show that, in contrast, the galaxy’s gas mass is sensitive to the physics of star formation, although the inclusion of feedback-driven star formation laws significantly changes the naive expectations. While these models are far from detailed enough to describe every aspect of galaxy formation, they inform our understanding of galaxy formation by illustrating several generic aspects of that process, and they provide a physically grounded basis for extrapolating predictions to faint galaxies and high redshifts currently out of reach of observations. If observations show violations from these simple trends, they would indicate new physics occurring inside the earliest generations of galaxies.


Sign in / Sign up

Export Citation Format

Share Document