scholarly journals Are we observing an NSC in course of formation in the NGC 4654 galaxy?

2021 ◽  
Vol 503 (1) ◽  
pp. 594-602
Author(s):  
R Schiavi ◽  
R Capuzzo-Dolcetta ◽  
I Y Georgiev ◽  
M Arca-Sedda ◽  
A Mastrobuono-Battisti

ABSTRACT We use direct N-body simulations to explore some possible scenarios for the future evolution of two massive clusters observed towards the centre of NGC 4654, a spiral galaxy with mass similar to that of the Milky Way. Using archival HST data, we obtain the photometric masses of the two clusters, M = 3 × 105 M⊙ and M = 1.7 × 106 M⊙, their half-light radii, Reff ∼ 4 pc and Reff ∼ 6 pc, and their projected distances from the photometric centre of the galaxy (both <22 pc). The knowledge of the structure and separation of these two clusters (∼24 pc) provides a unique view for studying the dynamics of a galactic central zone hosting massive clusters. Varying some of the unknown cluster orbital parameters, we carry out several N-body simulations showing that the future evolution of these clusters will inevitably result in their merger. We find that, mainly depending on the shape of their relative orbit, they will merge into the galactic centre in less than 82 Myr. In addition to the tidal interaction, a proper consideration of the dynamical friction braking would shorten the merging times up to few Myr. We also investigate the possibility to form a massive nuclear star cluster (NSC) in the centre of the galaxy by this process. Our analysis suggests that for low-eccentricity orbits, and relatively long merger times, the final merged cluster is spherical in shape, with an effective radius of few parsecs and a mass within the effective radius of the order of $10^5\, \mathrm{M_{\odot }}$. Because the central density of such a cluster is higher than that of the host galaxy, it is likely that this merger remnant could be the likely embryo of a future NSC.

2020 ◽  
Vol 500 (2) ◽  
pp. 2514-2524
Author(s):  
Joel Pfeffer ◽  
Carmela Lardo ◽  
Nate Bastian ◽  
Sara Saracino ◽  
Sebastian Kamann

ABSTRACT A number of the massive clusters in the halo, bulge, and disc of the Galaxy are not genuine globular clusters (GCs) but instead are different beasts altogether. They are the remnant nuclear star clusters (NSCs) of ancient galaxies since accreted by the Milky Way. While some clusters are readily identifiable as NSCs and can be readily traced back to their host galaxy (e.g. M54 and the Sagittarius Dwarf galaxy), others have proven more elusive. Here, we combine a number of independent constraints, focusing on their internal abundances and overall kinematics, to find NSCs accreted by the Galaxy and trace them to their accretion event. We find that the true NSCs accreted by the Galaxy are: M54 from the Sagittarius Dwarf, ω Centari from Gaia-Enceladus/Sausage, NGC 6273 from Kraken, and (potentially) NGC 6934 from the Helmi Streams. These NSCs are prime candidates for searches of intermediate-mass black holes (BHs) within star clusters, given the common occurrence of galaxies hosting both NSCs and central massive BHs. No NSC appears to be associated with Sequoia or other minor accretion events. Other claimed NSCs are shown not to be such. We also discuss the peculiar case of Terzan 5, which may represent a unique case of a cluster–cluster merger.


Author(s):  
Fred C. Adams

As we take a longer-term view of our future, a host of astrophysical processes are waiting to unfold as the Earth, the Sun, the Galaxy, and the Universe grow increasingly older. The basic astronomical parameters that describe our universe have now been measured with compelling precision. Recent observations of the cosmic microwave background radiation show that the spatial geometry of our universe is flat (Spergel et al., 2003). Independent measurements of the red-shift versus distance relation using Type Ia supernovae indicate that the universe is accelerating and apparently contains a substantial component of dark vacuum energy (Garnavich et al., 1998; Perlmutter et al., 1999; Riess et al., 1998). This newly consolidated cosmological model represents an important milestone in our understanding of the cosmos. With the cosmological parameters relatively well known, the future evolution of our universe can now be predicted with some degree of confidence (Adams and Laughlin, 1997). Our best astronomical data imply that our universe will expand forever or at least live long enough for a diverse collection of astronomical events to play themselves out. Other chapters in this book have discussed some sources of cosmic intervention that can affect life on our planet, including asteroid and comet impacts (Chapter 11, this volume) and nearby supernova explosions with their accompanying gamma-rays (Chapter 12, this volume). In the longerterm future, the chances of these types of catastrophic events will increase. In addition, taking an even longer-term view, we find that even more fantastic events could happen in our cosmological future. This chapter outlines some of the astrophysical events that can affect life, on our planet and perhaps elsewhere, over extremely long time scales, including those that vastly exceed the current age of the universe. These projections are based on our current understanding of astronomy and the laws of physics, which offer a firm and developing framework for understanding the future of the physical universe (this topic is sometimes called Physical Eschatology – see the review of ćirković, 2003). Notice that as we delve deeper into the future, the uncertainties of our projections must necessarily grow.


2019 ◽  
Vol 623 ◽  
pp. A84 ◽  
Author(s):  
J. S. Clark ◽  
M. E. Lohr ◽  
L. R. Patrick ◽  
F. Najarro

The Arches is one of the youngest, densest and most massive clusters in the Galaxy. As such it provides a unique insight into the lifecycle of the most massive stars known and the formation and survival of such stellar aggregates in the extreme conditions of the Galactic Centre. In a previous study we presented an initial stellar census for the Arches and in this work we expand upon this, providing new and revised classifications for ∼30% of the 105 spectroscopically identified cluster members as well as distinguishing potential massive runaways. The results of this survey emphasise the homogeneity and co-evality of the Arches and confirm the absence of H-free Wolf-Rayets of WC sub-type and predicted luminosities. The increased depth of our complete dataset also provides significantly better constraints on the main sequence population; with the identification of O9.5 V stars for the first time we now spectroscopically sample stars with initial masses ranging from ∼16 M⊙ to ≥120 M⊙. Indeed, following from our expanded stellar census we might expect ≳50 stars within the Arches to have been born with masses ≳60 M⊙, while all 105 spectroscopically confirmed cluster members are massive enough to leave relativistic remnants upon their demise. Moreover the well defined observational properties of the main sequence cohort will be critical to the construction of an extinction law appropriate for the Galactic Centre and consequently the quantitative analysis of the Arches population and subsequent determination of the cluster initial mass function.


2007 ◽  
Vol 3 (S245) ◽  
pp. 203-206
Author(s):  
Laura Ferrarese ◽  
Patrick Côté

AbstractThe core structure of early-type galaxies is revisited in light of recent results from the ACS Virgo and Fornax Cluster Surveys. These surveys are comprised of HST/ACS g, z band images for a representative sample of 143 early-type galaxies, spanning a factor 720 in B-band luminosity. The data indicates a clear transition in the core structure going from the brightest to the faintest galaxies. In contrast to previous claims, however, this transition is found to be a continuous function of galaxy magnitude. We characterize the core structure in terms of deviations of the observed surface brightness profile – measured within ~ 2% of the galaxy effective radius – relative to the inner extrapolation of the Sérsic law that best fits the profiles on larger scales. Virtually all galaxies fainter than MB ~ −20 mag contain distinct stellar nuclei, and are described by surface brightness profiles that lie above the Sérsic extrapolation, while the reverse is true for brighter galaxies. The latter are also known to host supermassive black holes. A relation between SBHs and stellar nuclei is suggested by the fact that both types of “central massive objects” contain the same fraction, 0.2% of the total mass of the host galaxy.


1967 ◽  
Vol 31 ◽  
pp. 239-251 ◽  
Author(s):  
F. J. Kerr

A review is given of information on the galactic-centre region obtained from recent observations of the 21-cm line from neutral hydrogen, the 18-cm group of OH lines, a hydrogen recombination line at 6 cm wavelength, and the continuum emission from ionized hydrogen.Both inward and outward motions are important in this region, in addition to rotation. Several types of observation indicate the presence of material in features inclined to the galactic plane. The relationship between the H and OH concentrations is not yet clear, but a rough picture of the central region can be proposed.


2019 ◽  
pp. 75-89
Author(s):  
A.B. Lyubinin

The article comments on the concept of «socialism with Chinese specificity», which forms the ideological basis of the «Chinese miracle». The ideological origins of this concept, starting with Confucianism, are revealed. It has evolved to become increasingly pragmatic and to adapt to the realities of national and global development. The relation of this concept with the Marxist concept of socialism is shown. The article substantiates the fundamental theoretical thesis that in the objective-essential sense (in the elimination of, in particular, national specifics) Chinese society is a transitional form to socialism (a certain analogue of the Soviet society of the NEP period). The author talks about a «heterogeneous», «mixed» socio-economic system, the vector and nature of the future evolution of which will depend crucially on the strategic course of the CPC.


2007 ◽  
Vol 3 (S248) ◽  
pp. 148-155
Author(s):  
H. Kobayashi ◽  
N. Kawaguchi ◽  
S. Manabe ◽  
K. M. Shibata ◽  
M. Honma ◽  
...  

AbstractVERA aims at astrometric observations using phase referencing VLBI techniques, whose goal is a 10 micro arc-second accuracy for annual parallax measurements. VERA has four 20-m diameter VLBI radio telescopes in Japanese archipelago with the maximum baseline length of 2,300 km. They have the two-beam observing system, which makes simultaneous observations of two objects possible. This leads to very accurate phase referencing VLBI observations. An important science goal is to make a 3-dimensional map of the Galaxy and reveal its dynamics. In order to achieve this, VERA has the 22GHz and 43GHz bands for H2O and SiO maser objects, respectively. Maser objects are compact and suitable for astrometry observations. VERA's construction was started in 2000 and the array became operational in 2004. We have already measured annual parallaxes and proper motions of some galactic objects. In the future, VERA will collaborate with Korean and Chinese VLBI stations.


2016 ◽  
Vol 10 (6) ◽  
pp. 2693-2719 ◽  
Author(s):  
Antoine Marmy ◽  
Jan Rajczak ◽  
Reynald Delaloye ◽  
Christin Hilbich ◽  
Martin Hoelzle ◽  
...  

Abstract. Permafrost is a widespread phenomenon in mountainous regions of the world such as the European Alps. Many important topics such as the future evolution of permafrost related to climate change and the detection of permafrost related to potential natural hazards sites are of major concern to our society. Numerical permafrost models are the only tools which allow for the projection of the future evolution of permafrost. Due to the complexity of the processes involved and the heterogeneity of Alpine terrain, models must be carefully calibrated, and results should be compared with observations at the site (borehole) scale. However, for large-scale applications, a site-specific model calibration for a multitude of grid points would be very time-consuming. To tackle this issue, this study presents a semi-automated calibration method using the Generalized Likelihood Uncertainty Estimation (GLUE) as implemented in a 1-D soil model (CoupModel) and applies it to six permafrost sites in the Swiss Alps. We show that this semi-automated calibration method is able to accurately reproduce the main thermal condition characteristics with some limitations at sites with unique conditions such as 3-D air or water circulation, which have to be calibrated manually. The calibration obtained was used for global and regional climate model (GCM/RCM)-based long-term climate projections under the A1B climate scenario (EU-ENSEMBLES project) specifically downscaled at each borehole site. The projection shows general permafrost degradation with thawing at 10 m, even partially reaching 20 m depth by the end of the century, but with different timing among the sites and with partly considerable uncertainties due to the spread of the applied climatic forcing.


2009 ◽  
Vol 5 (S267) ◽  
pp. 273-282
Author(s):  
Andrew King

AbstractI review accretion and outflow in active galactic nuclei. Accreti4on appears to occur in a series of very small-scale, chaotic events, whose gas flows have no correlation with the large-scale structure of the galaxy or with each other. The accreting gas has extremely low specific angular momentum and probably represents only a small fraction of the gas involved in a galaxy merger, which may be the underlying driver.Eddington accretion episodes in AGN must be common in order for the supermassive black holes to grow. I show that they produce winds with velocities v ~ 0.1c and ionization parameters implying the presence of resonance lines of helium-like and hydrogen-like iron. The wind creates a strong cooling shock as it interacts with the interstellar medium of the host galaxy, and this cooling region may be observable in an inverse Compton continuum and lower-excitation emission lines associated with lower velocities. The shell of matter swept up by the shocked wind stalls unless the black hole mass has reached the value Mσ implied by the M–σ relation. Once this mass is reached, further black hole growth is prevented. If the shocked gas did not cool as asserted above, the resulting (“energy-driven”) outflow would imply a far smaller SMBH mass than actually observed. Minor accretion events with small gas fractions can produce galaxy-wide outflows, including fossil outflows in galaxies where there is little current AGN activity.


Sign in / Sign up

Export Citation Format

Share Document