scholarly journals Changes in the pulse phase dependence of X-ray emission lines in 4U 1626−67 with a torque reversal

2017 ◽  
Vol 475 (1) ◽  
pp. 999-1009 ◽  
Author(s):  
Aru Beri ◽  
Biswajit Paul ◽  
Gulab C Dewangan
2015 ◽  
Vol 451 (1) ◽  
pp. 508-516 ◽  
Author(s):  
Aru Beri ◽  
Biswajit Paul ◽  
Gulab C. Dewangan

1978 ◽  
Vol 225 ◽  
pp. 988 ◽  
Author(s):  
S. H. Pravdo ◽  
R. W. Bussard ◽  
R. H. Becker ◽  
E. A. Boldt ◽  
S. S. Holt ◽  
...  

2020 ◽  
Vol 500 (1) ◽  
pp. 1350-1365
Author(s):  
Aru Beri ◽  
Tinku Girdhar ◽  
Nirmal K Iyer ◽  
Chandreyee Maitra

ABSTRACT We report the results from a detailed timing and spectral study of a transient X-ray pulsar, 4U 1901+03 during its 2019 outburst. We performed broadband spectroscopy in the 1–70 $\rm keV$ energy band using four observations made with Swift and NuSTAR at different intensity levels. Our timing results reveal the presence of highly variable pulse profiles dependent on both luminosity and energy. Our spectroscopy results showed the presence of a cyclotron resonance scattering feature (CRSF) at ∼ 30 keV. This feature at 30 keV is highly luminosity and pulse phase dependent. Phase-averaged spectra during the last two observations, made close to the declining phase of the outburst, showed the presence of this feature at around $30~\rm {keV}$. The existence of CRSF at 30 keV during these observations is well supported by an abrupt change in the shape of pulse profiles found close to this energy. We also found that 30 keV feature was significantly detected in the pulse phase-resolved spectra of observations made at relatively high luminosities. Moreover, all spectral fit parameters showed a strong pulse phase dependence. In line with the previous findings, an absorption feature at around $10~\rm {keV}$ is significantly observed in the phase-averaged X-ray spectra of all observations and also showed a strong pulse phase dependence.


Author(s):  
G Sanjurjo-Ferrín ◽  
J M Torrejón ◽  
K Postnov ◽  
L Oskinova ◽  
J J Rodes-Roca ◽  
...  

Abstract Cen X-3 is a compact high mass X-ray binary likely powered by Roche lobe overflow. We present a phase-resolved X-ray spectral and timing analysis of two pointed XMM-Newton observations. The first one took place during a normal state of the source, when it has a luminosity LX ∼ 1036 erg s−1. This observation covered orbital phases φ = 0.00 − 0.37, i.e. the egress from the eclipse. The egress lightcurve is highly structured, showing distinctive intervals. We argue that different intervals correspond to the emergence of different emitting structures. The lightcurve analysis enables us to estimate the size of such structures around the compact star, the most conspicuous of which has a size ∼0.3R*, of the order of the Roche lobe radius. During the egress, the equivalent width of Fe emission lines, from highly ionized species, decreases as the X-ray continuum grows. On the other hand, the equivalent width of the Fe Kα line, from near neutral Fe, strengthens. This line is likely formed due to the X-ray illumination of the accretion stream. The second observation was taken when the source was 10 times X-ray brighter and covered the orbital phases φ = 0.36 − 0.80. The X-ray lightcurve in the high state shows dips. These dips are not caused by absorption but can be due to instabilities in the accretion stream. The typical dip duration, of about 1000 s, is much longer than the timescale attributed to the accretion of the clumpy stellar wind of the massive donor star, but is similar to the viscous timescale at the inner radius of the accretion disk.


2019 ◽  
Vol 15 (S356) ◽  
pp. 96-96
Author(s):  
Eleonora Sani

AbstractI present a detailed study of ionized outflows in a large sample of 650 hard X-ray detected AGN. Taking advantage of the legacy value of the BAT AGN Spectroscopic Survey (BASS, DR1), we are able to reveal the faintest wings of the [OIII] emission lines associated with outflows. The sample allows us to derive the incidence of outflows covering a wide range of AGN bolometric luminosity and test how the outflow parameters are related with various AGN power tracers, such as black hole mass, Eddington ratio, luminosity. I’ll show how ionized outflows are more frequently found in type 1.9 and type 1 AGN (50% and 40%) with respect to the low fraction in type 2 AGN (20%). Within such a framework, I’ll demonstrate how type 2 AGN outflows are almost evenly balanced between blue- and red-shifted winds. This, in strong contrast with type 1 and type 1.9 AGN outflows which are almost exclusively blue-shifted. Finally, I’ll prove how the outflow occurrence is driven by the accretion rate, whereas the dependence of outflow properties with respect to the other AGN power tracers happens to be quite mild.


2006 ◽  
Vol 2 (S238) ◽  
pp. 475-476
Author(s):  
Alexander F. Zakharov

AbstractRecent X-ray observations of microquasars and Seyfert galaxies reveal broad emission lines in their spectra, which can arise in the innermost parts of accretion disks. Recently Müller & Camenzind (2004) classified different types of spectral line shapes and described their origin. Zakharov (2006b) clarified their conclusions about an origin of doubled peaked and double horned line shapes in the framework of a radiating annulus model and discussed s possibility to evaluate black hole parameters analyzing spectral line shapes.


2013 ◽  
Vol 763 (1) ◽  
pp. 66 ◽  
Author(s):  
Ian Ewing ◽  
Damian J. Christian ◽  
Dennis Bodewits ◽  
Konrad Dennerl ◽  
Carey M. Lisse ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document