scholarly journals TC3A: The Cancer 3′ UTR Atlas

2017 ◽  
Vol 46 (D1) ◽  
pp. D1027-D1030 ◽  
Author(s):  
Xin Feng ◽  
Lei Li ◽  
Eric J Wagner ◽  
Wei Li

AbstractWidespread alternative polyadenylation (APA) occurs during enhanced cellular proliferation and transformation. Recently, we demonstrated that CFIm25-mediated 3′ UTR shortening through APA promotes glioblastoma tumor growth in vitro and in vivo, further underscoring its significance to tumorigenesis. Here, we report The Cancer 3′ UTR Atlas (TC3A), a comprehensive resource of APA usage for 10,537 tumors across 32 cancer types. These APA events represent potentially novel prognostic biomarkers and may uncover novel mechanisms for the regulation of cancer driver genes. TC3A is built on top of the now de facto standard cBioPortal. Therefore, the large community of existing cBioPortal users and clinical researchers will find TC3A familiar and immediately usable. TC3A is currently fully functional and freely available at http://tc3a.org.

2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e18000-e18000
Author(s):  
Oren Gilad ◽  
Dansu Li ◽  
Erin George ◽  
Rakesh Chettier ◽  
Fiona Simpkins ◽  
...  

e18000 Background: Endometriosis is a common gynecologic disorder proven to be a precursor to several cancer types. We developed a potent and selective inhibitor (ATRN-119) of a critical DNA damage response (DDR) protein kinase: the ataxia telangiectasia and Rad3-related protein (ATR). Treatment with ATRN-119 is synthetically lethal with multiple cancer-associated changes in DDR pathways, representing a new and effective strategy to treat cancer. The objective of this study is to evaluate the overlap of DDR genes that respond to ATRN-119 and those mutated in endometriosis. Methods: We sequenced the exomes of 2,932 unrelated women with surgically-confirmed endometriosis (GERMLINE) and 274 tissue blocks containing endometriosis lesions (LESION). DNA was extracted using standard methods. Missense and truncation variants were analyzed. These data were compared to analysis of a whole proteome screen for factors that respond to exposure to ATRN-119 and may influence responsiveness to treatment. Factors observed in both methods were considered high-priority biomarker candidates and were experimentally tested for synthetic lethality with ATRN-119 treatment. Results: Analysis of endometriosis patients found 89% of the LESION samples had 2 or more DDR mutations vs 83% of the GERMLINE samples. There is an excess of DDR mutations per sample in LESION (5.5 mutations) vs GERMLINE (3.89 mutations) [p = 4.66x10-6, Mann Whitney test]. In parallel, we identified 92 genes as protein responders to ATRN-119 treatment. Mutations in 21 of these 92 genes show nominal association with surgical endometriosis (p < 0.05). However, of these responsive genes, 18 are known TIER 1 cancer-driver genes and well-characterized mutations were found in three dominant genes in the LESION tissue (ATM, DDB1, and ARID1A). Overall 20% of the patients who’s LESION we examined subsequently developed an endometriosis-associated cancer. Both in vitro and in vivo studies confirmed synthetic-lethal interactions between ATRN-119 treatment and alteration of these genes. Conclusions: The overlap between DDR genes responding to ATRN-119 and those mutated in endometriosis-associated cancer suggest that genetic markers underlying response and resistance will be critical to extend the use of these drugs while increasing efficacy and minimizing toxicities. Furthermore, our data support the inclusion of endometriosis-associated cancer patients in planned ATRN-119 clinical trials.


2017 ◽  
Vol 114 (27) ◽  
pp. 7077-7082 ◽  
Author(s):  
Francesco Casciello ◽  
Fares Al-Ejeh ◽  
Greg Kelly ◽  
Donal J. Brennan ◽  
Shin Foong Ngiow ◽  
...  

G9a is an epigenetic regulator that methylates H3K9, generally causing repression of gene expression, and participates in diverse cellular functions. G9a is genetically deregulated in a variety of tumor types and can silence tumor suppressor genes and, therefore, is important for carcinogenesis. Although hypoxia is recognized to be an adverse factor in tumor growth and metastasis, the role of G9a in regulating gene expression in hypoxia has not been described extensively. Here, we show that G9a protein stability is increased in hypoxia via reduced proline hydroxylation and, hence, inefficient degradation by the proteasome. This inefficiency leads to an increase in H3K9me2 at its target promoters. Blocking the methyltransferase activity of G9a inhibited cellular proliferation and migration in vitro and tumor growth in vivo. Furthermore, an increased level of G9a is a crucial factor in mediating the hypoxic response by down-regulating the expression of specific genes, includingARNTL,CEACAM7,GATA2,HHEX,KLRG1, andOGN. This down-regulation can be rescued by a small molecule inhibitor of G9a. Based on the hypothesis that the changes in gene expression would influence patient outcomes, we have developed a prognostic G9a-suppressed gene signature that can stratify breast cancer patients. Together, our findings provide an insight into the role G9a plays as an epigenetic mediator of hypoxic response, which can be used as a diagnostic marker, and proposes G9a as a therapeutic target for solid cancers.


Cancers ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 382 ◽  
Author(s):  
Eunice Lozada-Delgado ◽  
Nilmary Grafals-Ruiz ◽  
Miguel Miranda-Román ◽  
Yasmarie Santana-Rivera ◽  
Fatma Valiyeva ◽  
...  

Glioblastoma (GBM) is the most common and aggressive of all brain tumors, with a median survival of only 14 months after initial diagnosis. Novel therapeutic approaches are an unmet need for GBM treatment. MicroRNAs (miRNAs) are a class of small non-coding RNAs that regulate gene expression at the post-transcriptional level. Several dysregulated miRNAs have been identified in all cancer types including GBM. In this study, we aimed to uncover the role of miR-143 in GBM cell lines, patient samples, and mouse models. Quantitative real-time RT-PCR of RNA extracted from formalin-fixed paraffin-embedded (FFPE) samples showed that the relative expression of miR-143 was higher in GBM patients compared to control individuals. Transient transfection of GBM cells with a miR-143 oligonucleotide inhibitor (miR-143-inh) resulted in reduced cell proliferation, increased apoptosis, and cell cycle arrest. SLC30A8, a glucose metabolism-related protein, was identified as a direct target of miR-143 in GBM cells. Moreover, multiple injections of GBM tumor-bearing mice with a miR-143-inh-liposomal formulation significantly reduced tumor growth compared to control mice. The reduced in vitro cell growth and in vivo tumor growth following miRNA-143 inhibition suggests that miR-143 is a potential therapeutic target for GBM therapy.


NAR Cancer ◽  
2020 ◽  
Vol 2 (4) ◽  
Author(s):  
Xiwei Sun ◽  
Juze Yang ◽  
Mengqian Yu ◽  
Dongxia Yao ◽  
Liyuan Zhou ◽  
...  

Abstract Transfer RNA-derived RNA fragments (tRFs) are a class of small non-coding RNAs that are abundant in many organisms, but their role in cancer has not been fully explored. Here, we report a functional genomic landscape of tRFs in 8118 specimens across 15 cancer types from The Cancer Genome Atlas. These tRFs exhibited characteristics of widespread expression, high sequence conservation, cytoplasmic localization, specific patterns of tRNA cleavage and conserved cleavage in tissues. A cross-tumor analysis revealed significant commonality among tRF expression subtypes from distinct tissues of origins, characterized by upregulation of a group of tRFs with similar size and activation of cancer-associated signaling. One of the largest superclusters was composed of 22 nt 3′-tRFs upregulated in 13 cancer types, all of which share the activation of Ras/MAPK, RTK and TSC/mTOR signaling. tRF-based subgrouping provided clinically relevant stratifications and significantly improved outcome prediction by incorporating clinical variables. Additionally, we discovered 11 cancer driver tRFs using an effective approach for accurately exploring cross-tumor and platform trends. As a proof of concept, we performed comprehensive functional assays on a non-microRNA driver tRF, 5′-IleAAT-8-1-L20, and validated its oncogenic roles in lung cancer in vitro and in vivo. Our study also provides a valuable tRF resource for identifying diagnostic and prognostic biomarkers, developing cancer therapy and studying cancer pathogenesis.


2019 ◽  
Author(s):  
Qianqian Gao ◽  
Wenjie Ouyang ◽  
Bin Kang ◽  
Xu Han ◽  
Ying Xiong ◽  
...  

AbstractBackgroundKRAS is one of the most frequently mutated oncogenes in human cancers, but its activating mutations have remained undruggable due to its picomolar affinity for GTP/GDP and its smooth protein structure resulting in the absence of known allosteric regulatory sites.ResultsWith the goal of treating mutated KRAS-driven cancers, two CRISPR systems, CRISPR-SpCas9 genome-editing system and transcription-regulating system dCas9-KRAB, were developed to directly deplete KRAS mutant allele or to repress its transcription in cancer cells, respectively, through guide RNA specifically targeting the mutant but not wild-type allele. The effect of in vitro proliferation and cell cycle on cancer cells as well as in vivo tumor growth was examined after delivery of Cas9 system. SpCas9 and dCas9-KRAB systems with sgRNA targeting the mutant allele both blocked the expression of mutant KRAS gene, leading to an inhibition of cancer cell proliferation. Local adenoviral injections using SpCas9 and dCas9-KRAB systems both suppressed tumor growth in vivo. The gene-depletion system (SpCas9) performed more effectively than the transcription-suppressing system (dCas9-KRAB) on tumor inhibition. Application of both Cas9 systems to wild-type KRAS tumor cells did not affect cell proliferation in vitro and in vivo. Furthermore, through bioinformatic analysis of 31555 SNP mutations of the top 20 cancer driver genes, we showed that our mutant-specific editing strategy could be extended to a list of oncogenic mutations with high editing potentials, and this pipeline can be applied to analyze the distribution of PAM sequence in the genome to survey the best targets for other editing purpose.ConclusionsWe successfully developed both gene-depletion and transcription-suppressing systems to specifically target an oncogenic mutant allele of KRAS which led to significant tumor regression. It provides a promising strategy for the treatment of tumors with driver gene mutations.


Cancers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 498
Author(s):  
Guan-Nan Zhang ◽  
Pranav Gupta ◽  
Ming Wang ◽  
Anna Maria Barbuti ◽  
Charles R. Ashby ◽  
...  

Although the judicious use of anticancer drugs that target one or more receptor tyrosine kinases constitutes an effective strategy to attenuate tumor growth, drug resistance is commonly encountered in cancer patients. The ATP-binding cassette transporters are one of the major contributors to the development of multidrug resistance as their overexpression significantly decreases the intracellular concentration and thus, the efficacy of certain anticancer drugs. Therefore, the development of treatment strategies that would not be susceptible to efflux or excretion by specific ABC transporters could overcome resistance to treatment. Here, we investigated the anticancer efficacy of saporin, a ribosome-inactivating protein. Since saporin has poor permeability across the cell membrane, it was encapsulated in a lipid-based nanoparticle system (EC16-1) that effectively delivered the formulation (EC16-1/saporin) intracellularly and produced anti-cancer efficacy. EC16-1/saporin, at nanomolar concentrations, significantly inhibited the cellular proliferation of parental and ABCB1- and ABCG2-overexpressing cancer cells. EC16-1/saporin did not significantly alter the subcellular localization of ABCB1 and ABCG2. In addition, EC16-1/saporin induced apoptosis in parental and ABCB1- and ABCG2-overexpressing cancer cells. In a murine model system, EC16-1/saporin significantly inhibited the tumor growth in mice xenografted with parental and ABCB1- and ABCG2-overexpressing cancer cells. Our findings suggest that the EC16-1/saporin combination could potentially be a novel therapeutic treatment in patients with parental or ABCB1- and ABCG2-positive drug-resistant cancers.


2018 ◽  
Vol 10 ◽  
pp. 175883401875508 ◽  
Author(s):  
Zubair Ahmed Ratan ◽  
Young-Jin Son ◽  
Mohammad Faisal Haidere ◽  
Bhuiyan Mohammad Mahtab Uddin ◽  
Md. Abdullah Yusuf ◽  
...  

Bacteria and archaea possess adaptive immunity against foreign genetic materials through clustered regularly interspaced short palindromic repeat (CRISPR) systems. The discovery of this intriguing bacterial system heralded a revolutionary change in the field of medical science. The CRISPR and CRISPR-associated protein 9 (Cas9) based molecular mechanism has been applied to genome editing. This CRISPR-Cas9 technique is now able to mediate precise genetic corrections or disruptions in in vitro and in vivo environments. The accuracy and versatility of CRISPR-Cas have been capitalized upon in biological and medical research and bring new hope to cancer research. Cancer involves complex alterations and multiple mutations, translocations and chromosomal losses and gains. The ability to identify and correct such mutations is an important goal in cancer treatment. In the context of this complex cancer genomic landscape, there is a need for a simple and flexible genetic tool that can easily identify functional cancer driver genes within a comparatively short time. The CRISPR-Cas system shows promising potential for modeling, repairing and correcting genetic events in different types of cancer. This article reviews the concept of CRISPR-Cas, its application and related advantages in oncology.


2019 ◽  
Vol 2 (4) ◽  
pp. 83-98 ◽  
Author(s):  
André De Lima Mota ◽  
Bruna Vitorasso Jardim-Perassi ◽  
Tialfi Bergamin De Castro ◽  
Jucimara Colombo ◽  
Nathália Martins Sonehara ◽  
...  

Breast cancer is the most common cancer among women and has a high mortality rate. Adverse conditions in the tumor microenvironment, such as hypoxia and acidosis, may exert selective pressure on the tumor, selecting subpopulations of tumor cells with advantages for survival in this environment. In this context, therapeutic agents that can modify these conditions, and consequently the intratumoral heterogeneity need to be explored. Melatonin, in addition to its physiological effects, exhibits important anti-tumor actions which may associate with modification of hypoxia and Warburg effect. In this study, we have evaluated the action of melatonin on tumor growth and tumor metabolism by different markers of hypoxia and glucose metabolism (HIF-1α, glucose transporters GLUT1 and GLUT3 and carbonic anhydrases CA-IX and CA-XII) in triple negative breast cancer model. In an in vitro study, gene and protein expressions of these markers were evaluated by quantitative real-time PCR and immunocytochemistry, respectively. The effects of melatonin were also tested in a MDA-MB-231 xenograft animal model. Results showed that melatonin treatment reduced the viability of MDA-MB-231 cells and tumor growth in Balb/c nude mice (p <0.05). The treatment significantly decreased HIF-1α gene and protein expression concomitantly with the expression of GLUT1, GLUT3, CA-IX and CA-XII (p <0.05). These results strongly suggest that melatonin down-regulates HIF-1α expression and regulates glucose metabolism in breast tumor cells, therefore, controlling hypoxia and tumor progression. 


Author(s):  
С.В. Калиш ◽  
С.В. Лямина ◽  
А.А. Раецкая ◽  
И.Ю. Малышев

Цель исследования. Репрограммирование М1 фенотипа макрофагов с ингибированными факторами транскрипции М2 фенотипа STAT3, STAТ6 и SMAD и оценка их влияния на развитие карциномы Эрлиха (КЭ) in vitro и in vivo. Методика. Рост опухоли иницировали in vitro путем добавления клеток КЭ в среду культивирования RPMI-1640 и in vivo путем внутрибрюшинной инъекции клеток КЭ мышам. Результаты. Установлено, что M1макрофаги и in vitro, и in vivo оказывают выраженный противоопухолевый эффект, который превосходит антиопухолевые эффекты М1, M1, M1 макрофагов и цисплатина. Заключение. М1 макрофаги с ингибированными STAT3, STAT6 и/или SMAD3 эффективно ограничивают рост опухоли. Полученные данные обосновывают разработку новой технологии противоопухолевой клеточной терапии. Objective. Reprogramming of M1 macrophage phenotype with inhibited M2 phenotype transcription factors, such as STAT3, STAT6 and SMAD and assess their impact on the development of Ehrlich carcinoma (EC) in vitro and in vivo . Methods. Tumor growth in vitro was initiated by addition of EC cells in RPMI-1640 culture medium and in vivo by intraperitoneal of EC cell injection into mice. Results. It was found that M1 macrophages have a pronounced anti-tumor effect in vitro , and in vivo , which was greater than anti-tumor effects of M1, M1, M1 macrophages and cisplatin. Conclusion. M1 macrophages with inhibited STAT3, STAT6 and/or SMAD3 effectively restrict tumor growth. The findings justify the development of new anti-tumor cell therapy technology.


2012 ◽  
Vol 38 (12) ◽  
pp. 1121-1131
Author(s):  
Xiao-Hui WANG ◽  
Ya-Min ZHENG ◽  
Ye-Qing CUI ◽  
Shuang LIU ◽  
Hai-Chen SUN ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document