scholarly journals TMIC-21. TARGETING INVADOPODIA TO BLOCK IONIZING RADIATION-INDUCED GLIOBLASTOMA CELL INVASION

2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi251-vi252
Author(s):  
Lisa Decotret ◽  
Kevin Bennewith

Abstract BACKGROUND Glioblastoma multiforme (GBM) is a highly heterogeneous and aggressive brain tumour that is considered incurable. The majority of GBM patients have a median survival of 15 months despite undergoing extensive treatment. The principal reason for poor outcome is a high rate of recurrence, often due to the tumours cells escaping therapy by infiltrating into the surrounding healthy brain tissue. Previous work from our lab suggests tumour cells that survive radiation therapy (RT) exhibit a more aggressively metastatic phenotype. We hypothesize that RT may increase GBM cell invasion by promoting the activity of invadopodia. Invadopodia are protrusions of the plasma membrane that secrete matrix metalloproteinases to degrade surrounding tissue. Further understanding of the mechanisms by which RT regulates invadopodial biology may lead to new therapeutic strategies to slow or halt the invasion of GBM cells and extend the lives of patients. RESULTS Three human GBM cell lines were exposed to 0, 2, or 5 Gy of ionizing radiation (IR) prior to quantification of cell viability by clonogenic survival assays. Invasion was investigated using a Transwell Matrigel Invasion Assay 48 hours post-IR. Exposure to 2 Gy IR increased invasion of LN229 and U87-MG cells but not LN18 cells. These data suggest that clinically relevant levels of radiation (2 Gy) increases the invasiveness of a subset of GBM cells in vitro. We are currently analyzing proteomic changes in LN229, U87-MG, and LN18 cells post-IR to identify novel drivers of IR-induced GBM cell invasion. Future work will involve genetically or pharmacologically inhibiting the proteins identified via mass spectrometry to determine their role in therapy induced invadopodia-mediated GBM cell invasion. SIGNIFICANCE: Recent evidence suggests tumour cells that survive RT exhibit a more aggressive phenotype. Identifying novel therapeutic targets to limit IR-induced GBM invasion may help to increasing the efficacy of current brain cancer therapy.

2019 ◽  
Author(s):  
Liyi Huang ◽  
Haidan Lin ◽  
Qing Chen ◽  
Lehua Yu ◽  
Dingqun Bai

Abstract Background: breast cancer is the most commonly women cancer and most breast cancer deaths are related to tumor metastasis. Therefore, inhibiting metastasis may provide a therapeutic treatment for breast cancer. In the present study, pyropheophorbide-α methyl ester mediated photodynamic therapy (MPPa-PDT) was used to inhibit metastasis in breast cancer cells MCF-7. Methods: Uptake of MPPa was detected by fluorescence microscope. Cell viability was evaluated by CCK-8. Generation of ROS were detected by DCFH-DA. Migration of cells was assessed by wound healing assay and invasion ability was assessed by Matrigel invasion assay. Levels of MMP2 and MMP9 were measured by PCR. Akt, Phospho-Akt, Phospho-NF-kB p65 and NF-kB p65 were measured by western blotting. F-actin cytoskeleton was observed by immunofluorescence. Lung organs were stained with Hematoxylin and Eosin. Results: Following MPPa-PDT, migration and invasion were decreased in the MCF-7 cells. MPPa-PDT down-regulated expression of MMP2 and MMP9 which is responsible for metastasis. MPPa-PDT reduced the phosphorylation of AKT and NF-κB. MPPa-PDT also destroyed cytoskeleton F-actin in MCF-7 cells. These effects were blocked by the reactive oxygen scavenger NAC or AKT activator SC79 while PI3K inhibitor LY294002 or AKT inhibitor Triciribine increased these effects. Moreover, MPPa-PDT inhibited tumor metastasis and destroyed F-actin in vivo. Conclusion: taken together, these results demonstrated that MPPa-PDT inhibits metastasis of MCF-7 cells both in vitro and vivo, and that may involve in AKT-NF-κB-dependent MMP-9 signaling pathway. Thus, MPPa-PDT may be a promising therapeutic treatment to inhibit metastasis.


2021 ◽  
Author(s):  
Zhaobin Guo ◽  
Chih-Tsung Yang ◽  
Chia-Chi Chien ◽  
Luke Selth ◽  
Pierre Bagnaninchi ◽  
...  

Measuring tumour cell invasiveness through three-dimensional (3D) tissues, particularly at the single cell level, can provide important mechanistic understanding and assist in identifying therapeutic targets of tumour invasion. However, current experimental approaches, including standard in vitro invasion assays, have limited physiological relevance and offer insufficient insight about the vast heterogeneity in tumour cell migration through tissues. To address these issues, here we report on the concept of optical cellular micromotion, where digital holographic microscopy (DHM) is used to map the optical thickness fluctuations at sub-micron scale within single cells. These fluctuations are driven by the dynamic movement of subcellular structures including the cytoskeleton and inherently associated with the biological processes involved in cell invasion within tissues. We experimentally demonstrate that the optical cellular micromotion correlates with tumour cells motility and invasiveness both at the population and single cell levels. In addition, the optical cellular micromotion significantly reduced upon treatment with migrastatic drugs that inhibit tumour cell invasion. These results demonstrate that micromotion measurements can rapidly and non-invasively determine the invasive behaviour of single tumour cells within tissues, yielding a new and powerful tool to assess the efficacy of approaches targeting tumour cell invasiveness.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e13096-e13096
Author(s):  
Elias Eteshola ◽  
Karenia Landa ◽  
Eun-Sil Shelley Hwang ◽  
Smita Nair ◽  
Bruce Sullenger

e13096 Background: Breast cancers remain the most lethal malignancies amongst women worldwide and the second leading cause of cancer-related mortalities in the US. Subtype heterogeneity and aggressive invasive potential are believed to be the major contributors of these outcomes. Triple-negative breast cancer (TNBC) are notoriously aggressive, difficult-to-treat, and metastatic. Inflammation-driven tumorigenesis has been shown to correlate with cell-free DNA (cfDNA) and other damage-associated molecular patterns (DAMPs) in cancer patient sera. We showed that nucleic-acid scavengers (NAS) can block pro-inflammatory signals elicited by DAMP-activation of innate immune sensors (e.g. toll-like receptors). Treatment with the NAS PAMAM-G3 drastically reduced liver metastatic burden in an immunocompetent murine model of pancreatic cancer. Methods: TNBC cells lines were treated with a cocktail of standard-of-care chemotherapeutic agents and the conditioned media (CM) from these cells served as an in vitro DAMP source. Downstream function of TLR activation was tested via a HEK293-TLR reporter cell line measuring absorbance at 655nm. The in vitro invasive phenotype was tested and quantified using a Transwell-Matrigel invasion assay. Cytokine secretion was measured using a BioLegend cytokine array. Results: TNBC CM greatly increased TNBC cell invasion in vitro and that treatment with the NAS PAMAM-G3 significantly inhibits this effect. Treatment of human monocytes (THP-1) with TNBC CM elicited a strong pro-inflammatory response with elevated levels of IL-8, IL-6, CCL2, and IL-1β. Other biologically immune responders including human PBMCs will be tested to determine the potential impact on the tumor immune microenvironment during tumorigenesis and treatment. Conclusions: To elucidate the mechanism by which this NAS works in these tumor settings, our lab has developed several PAMAM-G3 derivatives, including biotin, IR-, and near-IR fluorophore labeled molecules. These molecules will allow us to capture and characterize DAMPs and do in vivo live imaging experiments to gain insight into NAS PK/PD properties. This insight into NAS capabilities will enhance our understanding of metastatic progression and its interplay with the immune system. Moreover, these principles will aid in the development of novel of anti-metastatic therapies to improve TNBC patient outcomes.


2018 ◽  
Vol 29 (25) ◽  
pp. 2979-2988 ◽  
Author(s):  
Ralitza Staneva ◽  
Federica Burla ◽  
Gijsje H. Koenderink ◽  
Stéphanie Descroix ◽  
Danijela Matic Vignjevic ◽  
...  

Tumor initiation and growth is associated with significant changes in the surrounding tissue. During carcinoma progression, a global stiffening of the extracellular matrix is observed and is interpreted as a signature of aggressive invasive tumors. However, it is still unknown whether this increase in matrix rigidity promotes invasion and whether this effect is constant along the course of invasion. Here we have developed a biomimetic in vitro assay that enabled us to address the question of the importance of tissue rigidity in the chronology of tumor invasion. Using low concentrations of the sugar threose, we can effectively stiffen reconstituted collagen I matrices and control the stiffening in time with no direct effect on residing cells. Our findings demonstrate that, depending on the timing of its stiffening, the extracellular matrix could either inhibit or promote cancer cell invasion and subsequent metastasis: while matrix stiffening after the onset of invasion promotes cancer cell migration and tumor spreading, stiff matrices encapsulate the tumor at an early stage and prevent cancer cell invasion. Our study suggests that adding a temporal dimension in in vitro models to analyze biological processes in four dimensions is necessary to fully capture their complexity.


2006 ◽  
Vol 387 (12) ◽  
pp. 1607-1612 ◽  
Author(s):  
Panagiotis Prezas ◽  
Andreas Scorilas ◽  
Christina Yfanti ◽  
Petar Viktorov ◽  
Niki Agnanti ◽  
...  

Abstract Recent evidence suggests that many tissue kallikreins are implicated in carcinogenesis. Kallikrein 8 (KLK8) plays a role in the physiology of the central nervous system. Kallikrein 7 (KLK7) takes part in skin desquamation. Both show altered expression in ovarian and breast cancer. In this study, we examined the level of mRNA expression of the KLK7 and KLK8 genes in 73 intracranial tumors using qualitative RT-PCR. The results were correlated with clinical and histomorphological variables and patient outcome. The expression of both genes was also examined in the brain cancer cell lines U-251 MG, D54 and SH-SY5Y and the invasive capacity of glioblastoma cells U-251 MG overexpressing hK7 or hK8 was also investigated in an in vitro Matrigel assay. Follow-up analysis revealed that expression of KLK7 mRNA was associated with shorter overall survival (OS) compared to patients with no KLK7 expression, as determined by Cox proportional hazard regression analysis. Overexpression of hK7 protein by cultivated brain tumor cells significantly enhanced the invasive potential in the Matrigel invasion assay, in contrast to cells overexpressing hK8 protein. Our data suggest that hK7 protein overexpression is associated with a more aggressive phenotype in brain cancer cells.


RSC Advances ◽  
2015 ◽  
Vol 5 (23) ◽  
pp. 17700-17708 ◽  
Author(s):  
Yanyan Wang ◽  
Hezhen Lu ◽  
Dahai Yu ◽  
Jinrui Zhang ◽  
Weiguo Liang ◽  
...  

Enzyme kinetics and Matrigel invasion assay indicated that the specific inhibition of HAuCl4 on MMP-14 involves a non-competitive reversible inhibitory mechanism and HAuCl4 inhibits HT-1080 cell invasion in a dose-dependent manner.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Yongsheng Li ◽  
Na Han ◽  
Tiejun Yin ◽  
Lulu Huang ◽  
Shunfang Liu ◽  
...  

Radioresistance remains a significant therapeutic obstacle in glioblastoma. Reactive oxygen species (ROS) are associated with multiple cellular functions such as cell proliferation and apoptosis. Nox4 NADPH oxidase is abundantly expressed and has proven to be a major source of ROS production in glioblastoma. Here we investigated the effects of Nox4 on GBM tumor cell invasion, angiogenesis, and radiosensitivity. A lentiviral shRNA vector was utilized to stably knockdown Nox4 in U87MG and U251 glioblastoma cells. ROS production was measured by flow cytometry using the fluorescent probe DCFH-DA. Radiosensitivity was evaluated by clonogenic assay and survival curve was generated. Cell proliferation activity was assessed by a cell counting proliferation assay and invasion/migration potential by Matrigel invasion assay. Tube-like structure formation assay was used to evaluate angiogenesis abilityin vitroand VEGF expression was assessed by MTT assay. Nox4 knockdown reduced ROS production significantly and suppressed glioblastoma cells proliferation and invasion and tumor associated angiogenesis and increased their radiosensitivityin vitro. Our results indicate that Nox4 may play a crucial role in tumor invasion, angiogenesis, and radioresistance in glioblastoma. Inhibition of Nox4 by lentivirus-mediated shRNA could be a strategy to overcome radioresistance and then improve its therapeutic efficacy for glioblastoma.


2015 ◽  
Vol 36 (5) ◽  
pp. 1903-1910 ◽  
Author(s):  
Ningning Zheng ◽  
Xudong Ding ◽  
Amy Sun ◽  
Rabita Jahan

Background: Hemangiomas are common vascular endothelial cell tumors. Abnormally activated PI3K/Akt signaling pathway is one of the most important biological characteristics of Hemangioma. 3-phosphoinositide-dependent kinase 1(PDK1), an upstream protein of Akt, regulates the activity of Akt and its downstream kinases. The objective of this study is to explore the effect of PDK1 on malignant vascular tumors and their cell signaling mechanism in mice. Methods: Mouse Hemangioendothelioma Endothelial Cells (EOMA cells) and Nu/Nu mice were used. The silencing of PDK1 was mediated by lentiviral shRNA. Western blotting, WST-1 proliferation assay, Matrigel invasion assay, and Xenograft vascular tumor model were utilized to examine the effects and mechanism of PDK1 growth, proliferation, and invasion of an Hemangioma. Results: PDK1 deficiency significantly reduced the proliferation and invasion of EOMA cells in vitro, and depressed the growth of vascular tumor in vivo by decreasing the activity of Akt signaling pathway. Conclusion: We hypothesize that PDK1 plays a significant role in the progression and growth of vascular tumors and targeting PDK1 may thus be considered in their treatment.


2018 ◽  
Vol 19 (8) ◽  
pp. 2168 ◽  
Author(s):  
Sonja Heller ◽  
Gabriele Maurer ◽  
Christina Wanka ◽  
Ute Hofmann ◽  
Anna-Luisa Luger ◽  
...  

In several tumor entities, transketolase-like protein 1 (TKTL1) has been suggested to promote the nonoxidative part of the pentose phosphate pathway (PPP) and thereby to contribute to a malignant phenotype. However, its role in glioma biology has only been sparsely documented. In the present in vitro study using LNT-229 glioma cells, we analyzed the impact of TKTL1 gene suppression on basic metabolic parameters and on survival following oxygen restriction and ionizing radiation. TKTL1 was induced by hypoxia and by hypoxia-inducible factor-1α (HIF-1α). Knockdown of TKTL1 via shRNA increased the cells’ demand for glucose, decreased flux through the PPP and promoted cell death under hypoxic conditions. Following irradiation, suppression of TKTL1 expression resulted in elevated levels of reactive oxygen species (ROS) and reduced clonogenic survival. In summary, our results indicate a role of TKTL1 in the adaptation of tumor cells to oxygen deprivation and in the acquisition of radioresistance. Further studies are necessary to examine whether strategies that antagonize TKTL1 function will be able to restore the sensitivity of glioma cells towards irradiation and antiangiogenic therapies in the more complex in vivo environment.


Cancers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2937
Author(s):  
Lorenza Mautone ◽  
Carlo Ferravante ◽  
Anna Tortora ◽  
Roberta Tarallo ◽  
Giorgio Giurato ◽  
...  

Integrins are cell-extracellular matrix adhesion molecules whose expression level undergoes quantitative changes upon neoplastic transformation and are considered functionally related to the development of cancer metastasis. We analyzed the largest mRNA-seq dataset available to determine the expression pattern of integrin family subunits in papillary thyroid carcinomas (PTC). ITGA2, 3, 6, V, and ITGB1 integrin subunits were overexpressed in PTC compared to normal thyroid tissue. The PTC histology variants “classical” and “tall cell” displayed a similar integrin expression profile with a higher level of ITGA3, ITGAV, and ITGB1, which differed from that of the “follicular” variant. Interestingly, compared to RAS mutations, BRAFV600E mutation was associated with a significantly higher expression of integrins. Some integrin subunits were associated with advanced disease stage, lymph node metastasis, extrathyroidal extension, and high-risk groups. Among them, ITGA3 expression displayed the highest correlation with advanced disease and was associated with a negative prognosis. In vitro scratch assay and Matrigel invasion assay in two different PTC cell lines confirmed α3β1 role in cell motility and invasion, supporting its involvement during tumor progression. These results demonstrate the existence of a PTC-specific integrin expression signature correlated to histopathology, specific driver gene mutations, and aggressiveness of the disease.


Sign in / Sign up

Export Citation Format

Share Document