scholarly journals Future climate change will impact the size and location of breeding and wintering areas of migratory thrushes in South America

The Condor ◽  
2021 ◽  
Author(s):  
Natália Stefanini Da Silveira ◽  
Maurício Humberto Vancine ◽  
Alex E Jahn ◽  
Marco Aurélio Pizo ◽  
Thadeu Sobral-Souza

Abstract Bird migration patterns are changing worldwide due to current global climate changes. Addressing the effects of such changes on the migration of birds in South America is particularly challenging because the details about how birds migrate within the Neotropics are generally not well understood. Here, we aim to infer the potential effects of future climate change on breeding and wintering areas of birds that migrate within South America by estimating the size and elevations of their future breeding and wintering areas. We used occurrence data from species distribution databases (VertNet and GBIF), published studies, and eBird for 3 thrush species (Turdidae; Turdus nigriceps, T. subalaris, and T. flavipes) that breed and winter in different regions of South America and built ecological niche models using ensemble forecasting approaches to infer current and future potential distributions throughout the breeding and wintering periods of each species. Our findings point to future shifts in wintering and breeding areas, mainly through elevational and longitudinal changes. Future breeding areas for T. nigriceps, which migrates along the Andes Mountains, will be displaced to the west, while breeding displacements to the east are expected for the other 2 species. An overall loss in the size of future wintering areas was also supported for 2 of the species, especially for T. subalaris, but an increase is anticipated for T. flavipes. Our results suggest that future climate change in South America will require that species shift their breeding and wintering areas to higher elevations in addition to changes in their latitudes and longitude. Our findings are the first to show how future climate change may affect migratory birds in South America throughout the year and suggest that even closely related migratory birds in South America will be affected in different ways, depending on the regions where they breed and overwinter.

2020 ◽  
Vol 8 ◽  
Author(s):  
Pablo Medrano-Vizcaíno ◽  
Patricia Gutiérrez-Salazar

Nasuella olivacea is an endemic mammal from the Andes of Ecuador and Colombia. Due to its rarity, aspects about its natural history, ecology and distribution patterns are not well known, therefore, research is needed to generate knowledge about this carnivore and a first step is studying suitable habitat areas. We performed Ecological Niche Models and applied future climate change scenarios (2.6 and 8.5 RCP) to determine the potential distribution of this mammal in Colombia and Ecuador, with current and future climate change conditions; furthermore, we analysed its distribution along several land covers. We found that N. olivacea is likely to be found in areas where no records have been reported previously; likewise, climate change conditions would increase suitable distribution areas. Concerning land cover, 73.4% of N. olivacea potential distribution was located outside Protected Areas (PA), 46.1% in Forests and 40.3% in Agricultural Lands. These findings highlight the need to further research understudied species, furthering our understanding about distribution trends and responses to changing climatic conditions, as well as informig future PA designing. These are essential tools for supporting wildlife conservation plans, being applicable for rare species whose biology and ecology remain unknown.


2013 ◽  
Vol 726-731 ◽  
pp. 3249-3255
Author(s):  
Emmanuel Kwame Appiah-Adjei ◽  
Long Cang Shu ◽  
Kwaku Amaning Adjei ◽  
Cheng Peng Lu

In order to ensure availability of water throughout the year in the Tailan River basin of northwestern China, an underground reservoir has been constructed in the basin to augment the groundwater resource and efficiently utilize it. This study investigates the potential impact of future climate change on the reservoir by assessing its influence on sustainability of recharge sources to the reservoir. The methods employed involved using a combined Statistical Downscaling Model (SDSM) and Long Ashton Research Station Weather Generator (LARS-WG) to downscale the climate variations of the basin from a global climate model and applying them through a simple soil water balance to quantify their impact on recharge to the reservoir. The results predict the current mean monthly temperature of the basin to increase by 2.01°C and 2.84°C for the future periods 2040-2069 and 2070-2099, respectively, while the precipitations are to decrease by 25% and 36% over the same periods. Consequently, the water balance analyses project the recharge to the reservoir to decrease by 37% and 49% for the periods 2040-2069 and 2070-2099, respectively. Thus the study provides useful information for sustainable management of the reservoir against potential future climate changes.


2014 ◽  
Vol 5 (1) ◽  
pp. 617-647
Author(s):  
Y. Yin ◽  
Q. Tang ◽  
X. Liu

Abstract. Climate change may affect crop development and yield, and consequently cast a shadow of doubt over China's food self-sufficiency efforts. In this study we used the model projections of a couple of global gridded crop models (GGCMs) to assess the effects of future climate change on the potential yields of the major crops (i.e. wheat, rice, maize and soybean) over China. The GGCMs were forced with the bias-corrected climate data from 5 global climate models (GCMs) under the Representative Concentration Pathways (RCP) 8.5 which were made available by the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP). The results show that the potential yields of rice may increase over a large portion of China. Climate change may benefit food productions over the high-altitude and cold regions where are outside current main agricultural area. However, the potential yield of maize, soybean and wheat may decrease in a large portion of the current main crop planting areas such as North China Plain. Development of new agronomic management strategy may be useful for coping with climate change in the areas with high risk of yield reduction.


Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1708
Author(s):  
Bashir B. Tiamiyu ◽  
Boniface K. Ngarega ◽  
Xu Zhang ◽  
Huajie Zhang ◽  
Tianhui Kuang ◽  
...  

Understanding how species have adapted and responded to past climate provides insights into the present geographical distribution and may improve predictions of how biotic communities will respond to future climate change. Therefore, estimating the distribution and potentially suitable habitats is essential for conserving sensitive species such as Garuga forrestii W.W.Sm., a tree species endemic to China. The potential climatic zones of G. forrestii were modelled in MaxEnt software using 24 geographic points and nine environmental variables for the current and future (2050 and 2070) conditions under two climate representative concentration pathways (RCP4.5 and RCP8.5) scenarios. The resulting ecological niche models (ENMs) demonstrated adequate internal assessment metrics, with all AUC and TSS values being >0.79 and a pROC of >1.534. Our results also showed that the distribution of G. forrestii was primarily influenced by temperature seasonality (% contribution = 12%), elevation (% contribution = 27.5%), and precipitation of the wettest month (% contribution = 35.6%). Our findings also indicated that G. forrestii might occupy an area of 309,516.2 km2 in southwestern China. We note that the species has a potential distribution in three provinces, including Yunnan, Sichuan, and Guangxi. A significant decline in species range is observed under the future worst case of high-emissions scenario (RCP8.5), with about 19.5% and 20% in 2050 and 2070, respectively. Similarly, higher elevations shift northward to southern parts of Sichuan province in 2050 and 2070. Thus, this study helps highlight the vulnerability of the species, response to future climate and provides an insight to assess habitat suitability for conservation management.


2014 ◽  
Vol 6 (3) ◽  
pp. 371-379 ◽  
Author(s):  
Auwal F. Abdussalam ◽  
Andrew J. Monaghan ◽  
Daniel F. Steinhoff ◽  
Vanja M. Dukic ◽  
Mary H. Hayden ◽  
...  

Abstract Meningitis remains a major health burden throughout Sahelian Africa, especially in heavily populated northwest Nigeria with an annual incidence rate ranging from 18 to 200 per 100 000 people for 2000–11. Several studies have established that cases exhibit sensitivity to intra- and interannual climate variability, peaking during the hot and dry boreal spring months, raising concern that future climate change may increase the incidence of meningitis in the region. The impact of future climate change on meningitis risk in northwest Nigeria is assessed by forcing an empirical model of meningitis with monthly simulations of seven meteorological variables from an ensemble of 13 statistically downscaled global climate model projections from phase 5 of the Coupled Model Intercomparison Experiment (CMIP5) for representative concentration pathway (RCP) 2.6, 6.0, and 8.5 scenarios, with the numbers representing the globally averaged top-of-the-atmosphere radiative imbalance (in W m−2) in 2100. The results suggest future temperature increases due to climate change have the potential to significantly increase meningitis cases in both the early (2020–35) and late (2060–75) twenty-first century, and for the seasonal onset of meningitis to begin about a month earlier on average by late century, in October rather than November. Annual incidence may increase by 47% ± 8%, 64% ± 9%, and 99% ± 12% for the RCP 2.6, 6.0, and 8.5 scenarios, respectively, in 2060–75 with respect to 1990–2005. It is noteworthy that these results represent the climatological potential for increased cases due to climate change, as it is assumed that current prevention and treatment strategies will remain similar in the future.


2008 ◽  
Vol 5 (6) ◽  
pp. 4847-4866 ◽  
Author(s):  
P. Friedlingstein ◽  
P. Cadule ◽  
S. L. Piao ◽  
P. Ciais ◽  
S. Sitch

Abstract. Future climate change will have impact on global and regional terrestrial carbon balances. The fate of African tropical forests over the 21st century has been investigated through global coupled climate carbon cycle model simulations. Under the SRES-A2 socio-economic CO2 emission scenario of the IPCC, and using the Institut Pierre Simon Laplace coupled ocean-terrestrial carbon cycle and climate model, IPSL-CM4-LOOP, we found that the warming over African ecosystems induces a reduction of net ecosystem productivity, making a 20% contribution to the global climate-carbon cycle positive feedback. However, the African rainforest ecosystem alone makes only a negligible contribution to the overall feedback, much smaller than the one arising from the Amazon forest. This is first because of the two times smaller area of forest in Africa, but also because of the relatively lower local land carbon cycle sensitivity to climate change. This beneficial role of African forests in mitigating future climate change should be taken into account when designing forest conservation policy.


Sign in / Sign up

Export Citation Format

Share Document