Thermodynamics of ideal polarizable interfaces

Author(s):  
Wolfgang Schmickler

For liquid electrodes thermodynamics offers a precise way to determine the surface charge and the surface excesses of a species. This is one of the reasons why much of the early work in electrochemistry was performed on liquid electrodes, particularly on mercury - another reason is that it is easier to generate clean liquid surfaces than clean solid surfaces. With some caveats and modifications, thermodynamic relations can also be applied to solid surfaces. We will first consider the interface between a liquid electrode and an electrolyte solution, and turn to solid electrodes later.

2020 ◽  
Vol 22 (35) ◽  
pp. 20123-20142
Author(s):  
Hadi Saboorian-Jooybari ◽  
Zhangxin Chen

This research work is directed at development of accurate physics-based formulas for quantification of curvature-dependence of surface potential, surface charge density, and total surface charge for cylindrical and spherical charged particles immersed in a symmetrical electrolyte solution.


2018 ◽  
Vol 2 (4) ◽  
pp. 60 ◽  
Author(s):  
Milad Radiom ◽  
Patricia Pedraz ◽  
Georgia Pilkington ◽  
Patrick Rohlmann ◽  
Sergei Glavatskih ◽  
...  

We investigate the interfacial properties of the non-halogenated ionic liquid (IL), trihexyl(tetradecyl)phosphonium bis(mandelato)borate, [P6,6,6,14][BMB], in proximity to solid surfaces, by means of surface force measurement. The system consists of sharp atomic force microscopy (AFM) tips interacting with solid surfaces of mica, silica, and gold. We find that the force response has a monotonic form, from which a characteristic steric decay length can be extracted. The decay length is comparable with the size of the ions, suggesting that a layer is formed on the surface, but that it is diffuse. The long alkyl chains of the cation, the large size of the anion, as well as crowding of the cations at the surface of negatively charged mica, are all factors which are likely to oppose the interfacial stratification which has, hitherto, been considered a characteristic of ionic liquids. The variation in the decay length also reveals differences in the layer composition at different surfaces, which can be related to their surface charge. This, in turn, allows the conclusion that silica has a low surface charge in this aprotic ionic liquid. Furthermore, the effect of temperature has been investigated. Elevating the temperature to 40 °C causes negligible changes in the interaction. At 80 °C and 120 °C, we observe a layering artefact which precludes further analysis, and we present the underlying instrumental origin of this rather universal artefact.


Langmuir ◽  
2008 ◽  
Vol 24 (20) ◽  
pp. 11762-11769 ◽  
Author(s):  
Joseph Deere ◽  
Rui F. De Oliveira ◽  
Bartłomiej Tomaszewski ◽  
Sarah Millar ◽  
Antonia Lalaouni ◽  
...  

2018 ◽  
Author(s):  
Samuel W. Coles ◽  
Vladislav Ivanistsev

<div>In this article we discuss the nanostructure and calculated the capacitance of a solvate ionic liquid–electrode interfaces, where the electrode has a constant potential, and is thus inherently polarisable. Lithium ions from the lithium</div><div>glyme solvate ionic liquid are found within 0.5 nm of the electrode at all voltages studied, however, their solvation environment varies with voltage. Our study provides molecular insight into the electrode interface of solvate ionic liquids, with many features similar to pure ionic liquids. A comparison with previous studies of the same electrolyte using the fixed surface charge boundary condition is also illuminating, informing future computational studies of electrolyte–electrode interfaces.</div>


Sign in / Sign up

Export Citation Format

Share Document