Linear Dynamic Models

Author(s):  
Ronald K. Pearson

It was emphasized in Chapter 1 that low-order, linear time-invariant models provide the foundation for much intuition about dynamic phenomena in the real world. This chapter provides a brief review of the characteristics and behavior of linear models, beginning with these simple cases and then progressing to more complex examples where this intuition no longer holds: infinite-dimensional and time-varying linear models. In continuous time, infinite-dimensional linear models arise naturally from linear partial differential equations whereas in discrete time, infinite-dimensional linear models may be used to represent a variety of “slow decay” effects. Time-varying linear models are also extremely flexible: In the continuous-time case, many of the ordinary differential equations defining special functions (e.g., the equations defining Bessel functions) may be viewed as time-varying linear models; in the discrete case, the gamma function arises naturally as the solution of a time-varying difference equation. Sec. 2.1 gives a brief discussion of low-order, time-invariant linear dynamic models, using second-order examples to illustrate both the “typical” and “less typical” behavior that is possible for these models. One of the most powerful results of linear system theory is that any time-invariant linear dynamic system may be represented as either a moving average (i.e., convolution-type) model or an autoregressive one. Sec. 2.2 presents a short review of these ideas, which will serve to establish both notation and a certain amount of useful intuition for the discussion of NARMAX models presented in Chapter 4. Sec. 2.3 then briefly considers the problem of characterizing linear models, introducing four standard input sequences that are typical of those used in linear model characterization. These standard sequences are then used in subsequent chapters to illustrate differences between nonlinear model behavior and linear model behavior. Sec. 2.4 provides a brief introduction to infinite-dimensional linear systems, including both continuous-time and discrete-time examples. Sec. 2.5 provides a similar introduction to the subject of time-varying linear systems, emphasizing the flexibility of this class. Finally, Sec. 2.6 briefly considers the nature of linearity, presenting some results that may be used to define useful classes of nonlinear models.

Entropy ◽  
2020 ◽  
Vol 22 (5) ◽  
pp. 510 ◽  
Author(s):  
Longlong Liu ◽  
Di Ma ◽  
Ahmad Taher Azar ◽  
Quanmin Zhu

In this paper, a gradient descent algorithm is proposed for the parameter estimation of multi-input and multi-output (MIMO) total non-linear dynamic models. Firstly, the MIMO total non-linear model is mapped to a non-completely connected feedforward neural network, that is, the parameters of the total non-linear model are mapped to the connection weights of the neural network. Then, based on the minimization of network error, a weight-updating algorithm, that is, an estimation algorithm of model parameters, is proposed with the convergence conditions of a non-completely connected feedforward network. In further determining the variables of the model set, a method of model structure detection is proposed for selecting a group of important items from the whole variable candidate set. In order to verify the usefulness of the parameter identification process, we provide a virtual bench test example for the numerical analysis and user-friendly instructions for potential applications.


Author(s):  
Robert H. Moroto ◽  
Robert R. Bitmead ◽  
Amit Pandey

High-fidelity models are an increasingly indispensable tool for evaluating high-performance control and optimization algorithms of gas turbine (GT) engines. However, GT high-fidelity models (HFM’s) are often too complex for synthesizing model-based control and optimization algorithms, which are much more amenable to low-order linear dynamic models. Obtaining models suitable for control synthesis can be arduous and costly. White-box (first-principles) methods may produce models that lose fidelity in off-nominal conditions, while black-box (data-driven) methods yield model parameters without physical significance, preventing generalization of the model across product configurations. This paper presents a grey-box method for obtaining low-order linear dynamic models for a 5.5 MW GT engine that retain fidelity at off-nominal conditions and generalize to multiple product configurations. The approach exploits the structure of an available HFM by grouping its constituent component-level models according to their suitability to white-box or black-box modeling. Specifically, the rotor model is linearized, yielding a first-order linear model with adjustable physical parameters, e.g. inertia. A second-order open-loop linear model is obtained from remaining component-level models via system identification using closed-loop data generated by the HFM. The linear models are combined to form a third-order open-loop linear GT engine model, which retains fidelity with the HFM in transient validation experiments, and multiple rotor inertia values.


2021 ◽  
pp. 107754632110016
Author(s):  
Liang Huang ◽  
Cheng Chen ◽  
Shenjiang Huang ◽  
Jingfeng Wang

Stability presents a critical issue for real-time hybrid simulation. Actuator delay might destabilize the real-time test without proper compensation. Previous research often assumed real-time hybrid simulation as a continuous-time system; however, it is more appropriately treated as a discrete-time system because of application of digital devices and integration algorithms. By using the Lyapunov–Krasovskii theory, this study explores the convoluted effect of integration algorithms and actuator delay on the stability of real-time hybrid simulation. Both theoretical and numerical analysis results demonstrate that (1) the direct integration algorithm is preferably used for real-time hybrid simulation because of its computational efficiency; (2) the stability analysis of real-time hybrid simulation highly depends on actuator delay models, and the actuator model that accounts for time-varying characteristic will lead to more conservative stability; and (3) the integration step is constrained by the algorithm and structural frequencies. Moreover, when the step is small, the stability of the discrete-time system will approach that of the corresponding continuous-time system. The study establishes a bridge between continuous- and discrete-time systems for stability analysis of real-time hybrid simulation.


2021 ◽  
Author(s):  
Klaus B. Beckmann ◽  
Lennart Reimer

This monograph generalises, and extends, the classic dynamic models in conflict analysis (Lanchester 1916, Richardson 1919, Boulding 1962). Restrictions on parameters are relaxed to account for alliances and for peacekeeping. Incrementalist as well as stochastic versions of the model are reviewed. These extensions allow for a rich variety of patterns of dynamic conflict. Using Monte Carlo techniques as well as time series analyses based on GDELT data (for the Ethiopian-Eritreian war, 1998–2000), we also assess the empirical usefulness of the model. It turns out that linear dynamic models capture selected phases of the conflict quite well, offering a potential taxonomy for conflict dynamics. We also discuss a method for introducing a modicum of (bounded) rationality into models from this tradition.


Sign in / Sign up

Export Citation Format

Share Document