Estuarine–Coastal Interactions

Author(s):  
Thomas S. Bianchi

The coastal ocean is a dynamic region where the rivers, estuaries, ocean, land, and the atmosphere interact (Walsh, 1988; Mantoura et al., 1991; Alongi, 1998; Wollast, 1998). Coastlines extend over an estimated 350,000 km worldwide, and the coastal ocean, typically defined as a region that extends from the high water mark to the shelf break (figure 16.1; Alongi, 1998), covers approximately 7% (26 × 106 km2) of the surface global ocean (Gattuso et al., 1998). Although relatively small in area, this highly productive region (30% of the total net oceanic productivity) supports as much as 90% of the global fish catch (Holligan, 1992). In recent years, the coastal ocean has been recognized for its global importance with both national and international programs such as the Land–Ocean Interactions in the Coastal Zone (LOICZ) program, a subprogram of the International Global Change Program (IGBP) started in 1993 (Pernetta and Milliman, 1995), the European Union coastal core project (European Land–Ocean Interaction Studies, ELOISE) (Cadée et al., 1994), and in the U.S. Shelf Edge Exchange Processes Program (SEEP I and SEEP II) (Walsh et al., 1988; Anderson et al., 1994), the Coastal Ocean Processes (CoOP) program, Ocean Margins Program (OMP), and Land–Margin Ecosystem Research (LMER), to name a few. SEEP I and SEEP II were designed to test the Walsh et al. (1985) hypothesis that increased anthropogenic nutrient supply to the coastal ocean would result in enhanced burial of organic matter in continental margins due to higher offshore export of new productivity in the nearshore waters. While the hypothesis of offshore transport and burial was shown to be valid along certain regions of the eastern U.S. coast, other regions showed a more along-shelf transport (Walsh, 1994). More recent work in the OMP, which revisited some of the objectives of SEEP I and SEEP II, found that the accumulation of organic matter in upper slope sediments was only <1% of the total primary production in the entire continental margin of North Carolina (DeMaster et al., 2002). There are many factors that will ultimately determine if and how much nearshore production is exported offshore from the coastal ocean.

2016 ◽  
Author(s):  
Timothée Bourgeois ◽  
James C. Orr ◽  
Laure Resplandy ◽  
Christian Ethé ◽  
Marion Gehlen ◽  
...  

Abstract. Anthropogenic changes in atmosphere-ocean and atmosphere-land CO2 fluxes have been quantified extensively, but few studies have addressed the connection between land and ocean. In this transition zone, the coastal ocean, spatial and temporal data coverage is inadequate to assess its global budget. Thus we use a global ocean biogeochemical model to assess the coastal ocean's global inventory of anthropogenic CO2 and its spatial variability. We used an intermediate resolution, eddying version of the NEMO-PISCES model (ORCA05), varying from 20 to 50 km horizontally, i.e., coarse enough to allow multiple century-scale simulations but finer than coarse resolution models (~ 200 km), to begin to better resolve coastal bathymetry. Simulated results indicated that the global ocean absorbed 2.3 Pg C yr−1 of anthropogenic carbon during 1993–2012, consistent with previous estimates. Yet only 4.5 % of that (0.10 Pg C yr−1) is absorbed by the global coastal ocean, i.e., less than its 7.5 % proportion of the global ocean surface area. Coastal uptake is weakened due to a bottleneck in offshore transport, which is inadequate to reduce the mean anthropogenic carbon concentration of coastal waters to the mean level found in the open-ocean mixed layer.


2016 ◽  
Vol 13 (14) ◽  
pp. 4167-4185 ◽  
Author(s):  
Timothée Bourgeois ◽  
James C. Orr ◽  
Laure Resplandy ◽  
Jens Terhaar ◽  
Christian Ethé ◽  
...  

Abstract. Anthropogenic changes in atmosphere–ocean and atmosphere–land CO2 fluxes have been quantified extensively, but few studies have addressed the connection between land and ocean. In this transition zone, the coastal ocean, spatial and temporal data coverage is inadequate to assess its global budget. Thus we use a global ocean biogeochemical model to assess the coastal ocean's global inventory of anthropogenic CO2 and its spatial variability. We used an intermediate resolution, eddying version of the NEMO-PISCES model (ORCA05), varying from 20 to 50 km horizontally, i.e. coarse enough to allow multiple century-scale simulations but finer than coarse-resolution models (∼  200 km) to better resolve coastal bathymetry and complex coastal currents. Here we define the coastal zone as the continental shelf area, excluding the proximal zone. Evaluation of the simulated air–sea fluxes of total CO2 for 45 coastal regions gave a correlation coefficient R of 0.8 when compared to observation-based estimates. Simulated global uptake of anthropogenic carbon results averaged 2.3 Pg C yr−1 during the years 1993–2012, consistent with previous estimates. Yet only 0.1 Pg C yr−1 of that is absorbed by the global coastal ocean. That represents 4.5 % of the anthropogenic carbon uptake of the global ocean, less than the 7.5 % proportion of coastal-to-global-ocean surface areas. Coastal uptake is weakened due to a bottleneck in offshore transport, which is inadequate to reduce the mean anthropogenic carbon concentration of coastal waters to the mean level found in the open-ocean mixed layer.


2020 ◽  
Vol 655 ◽  
pp. 29-42
Author(s):  
SA O’Connell-Milne ◽  
SR Wing ◽  
SH Suanda ◽  
JA Udy ◽  
LM Durante ◽  
...  

Fluxes of nutrients and organic matter between estuaries and the open coast comprise an important component of ecosystem connectivity. Nevertheless, relatively little is known about how oceanographic processes, for example onshore retention of water in the coastal boundary layer, interact with major sinks for particulate organic matter such as bivalve filter feeding within inlets and estuaries. To investigate this interaction, total fluxes of water, nutrients (NH4, NOx and PO4) and chlorophyll a between Waitati Inlet on the wave-exposed coast of the South Island, New Zealand, and the coastal ocean were quantified over 40 tidal cycles. We found declines in total flux of phytoplankton and increases in flux of NH4 between flood and ebb tides. Net declines in phytoplankton biomass followed a Type II functional response curve, consistent with consumption by the large biomass of filter feeding bivalves within the inlet; however, an asymptote was not reached for the highest concentrations, indicating that feeding was likely limited by exposure time rather than concentration of food relative to biomass. An information-theoretic framework was then used to infer the most likely combination of environmental conditions influencing total fluxes of phytoplankton into the inlet. Onshore wind stress, wave transport and salinity explained 90% of the variation in flux of phytoplankton entering the inlet on flood tides. These results highlight the importance of the interaction between oceanographic forcing and bivalve filter feeding in modulating material dynamics and connectivity between estuaries and the coastal ocean.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Brice K. Grunert ◽  
Maria Tzortziou ◽  
Patrick Neale ◽  
Alana Menendez ◽  
Peter Hernes

AbstractThe Arctic is experiencing rapid warming, resulting in fundamental shifts in hydrologic connectivity and carbon cycling. Dissolved organic matter (DOM) is a significant component of the Arctic and global carbon cycle, and significant perturbations to DOM cycling are expected with Arctic warming. The impact of photochemical and microbial degradation, and their interactive effects, on DOM composition and remineralization have been documented in Arctic soils and rivers. However, the role of microbes, sunlight and their interactions on Arctic DOM alteration and remineralization in the coastal ocean has not been considered, particularly during the spring freshet when DOM loads are high, photoexposure can be quite limited and residence time within river networks is low. Here, we collected DOM samples along a salinity gradient in the Yukon River delta, plume and coastal ocean during peak river discharge immediately after spring freshet and explored the role of UV exposure, microbial transformations and interactive effects on DOM quantity and composition. Our results show: (1) photochemical alteration of DOM significantly shifts processing pathways of terrestrial DOM, including increasing relative humification of DOM by microbes by > 10%; (2) microbes produce humic-like material that is not optically distinguishable from terrestrial humics; and (3) size-fractionation of the microbial community indicates a size-dependent role for DOM remineralization and humification of DOM observed through modeled PARAFAC components of fluorescent DOM, either through direct or community effects. Field observations indicate apparent conservative mixing along the salinity gradient; however, changing photochemical and microbial alteration of DOM with increasing salinity indicate changing DOM composition likely due to microbial activity. Finally, our findings show potential for rapid transformation of DOM in the coastal ocean from photochemical and microbial alteration, with microbes responsible for the majority of dissolved organic matter remineralization.


2016 ◽  
Vol 64 (2) ◽  
pp. 111-120 ◽  
Author(s):  
Miroslav Fér ◽  
Martin Leue ◽  
Radka Kodešová ◽  
Horst H. Gerke ◽  
Ruth H. Ellerbrock

Abstract The organo-mineral coatings of soil aggregates, cracks, and biopores control sorption and macropore-matrix exchange during preferential flow, in particular in the clay-illuvial Bt-horizon of Luvisols. The soil organic matter (SOM) composition has been hypothesized to explain temporal changes in the hydraulic properties of aggregate surfaces. The objective of this research was to find relations between the temporal change in wettability, in terms of droplet infiltration dynamics, and the SOM composition of coated and uncoated aggregate surfaces. We used 20 to 40 mm sized soil aggregates from the Bt2 horizon of a Haplic Luvisol from loess that were (i) coated, (ii) not coated (both intact), and (iii) aggregates from which coatings were removed (cut). The SOM composition of the aggregate surfaces was characterized by infrared spectroscopy in the diffuse reflection mode (DRIFT). A potential wettability index (PWI) was calculated from the ratio of hydrophobic and hydrophilic functional groups in SOM. The water drop penetration times (WDPT) and contact angles (CA) during droplet infiltration experiments were determined on dry and moist aggregate samples of the three types. The decrease in the CA with time was described using the power function (CA(t) = at−b). For dry aggregates, the WDPT values were larger for coated as compared to uncoated regions on the aggregate surfaces, and increased with increasing PWI value (R2 = 0.75). The a parameter was significantly related to the WDPT (R2 = 0.84) and to the PWI (R2 = 0.64). The relations between the b parameter and the WDPT (R2 = 0.61) and the PWI (R2 = 0.53) were also significant. The WDPT values of wet soil aggregates were higher than those of dry aggregates due to high water contents, which limited the droplet infiltration potential. At the wet aggregate surfaces, the WDPT values increased with the PWI of the SOM (R2 = 0.64). In contrast to dry samples, no significant relationships were found between parameters a or b of CA(t) and WDPT or PWI for wet aggregate surfaces. The results suggest that the effect of the SOM composition of coatings on surface wettability decreases with increasing soil moisture. In addition to the dominant impact of SOM, the wettability of aggregate surfaces could be affected by different mineralogical compositions of clay in coatings and interiors of aggregates. Particularly, wettability of coatings could be decreased by illite which was the dominant clay type in coatings. However, the influence of different clay mineral fractions on surface wettability was not due to small number of measurements (2 and 1 samples from coatings and interiors, respectively) quantified.


2017 ◽  
Vol 14 (15) ◽  
pp. 3743-3762 ◽  
Author(s):  
Allison A. Oliver ◽  
Suzanne E. Tank ◽  
Ian Giesbrecht ◽  
Maartje C. Korver ◽  
William C. Floyd ◽  
...  

Abstract. The perhumid region of the coastal temperate rainforest (CTR) of Pacific North America is one of the wettest places on Earth and contains numerous small catchments that discharge freshwater and high concentrations of dissolved organic carbon (DOC) directly to the coastal ocean. However, empirical data on the flux and composition of DOC exported from these watersheds are scarce. We established monitoring stations at the outlets of seven catchments on Calvert and Hecate islands, British Columbia, which represent the rain-dominated hypermaritime region of the perhumid CTR. Over several years, we measured stream discharge, stream water DOC concentration, and stream water dissolved organic-matter (DOM) composition. Discharge and DOC concentrations were used to calculate DOC fluxes and yields, and DOM composition was characterized using absorbance and fluorescence spectroscopy with parallel factor analysis (PARAFAC). The areal estimate of annual DOC yield in water year 2015 was 33.3 Mg C km−2 yr−1, with individual watersheds ranging from an average of 24.1 to 37.7 Mg C km−2 yr−1. This represents some of the highest DOC yields to be measured at the coastal margin. We observed seasonality in the quantity and composition of exports, with the majority of DOC export occurring during the extended wet period (September–April). Stream flow from catchments reacted quickly to rain inputs, resulting in rapid export of relatively fresh, highly terrestrial-like DOM. DOC concentration and measures of DOM composition were related to stream discharge and stream temperature and correlated with watershed attributes, including the extent of lakes and wetlands, and the thickness of organic and mineral soil horizons. Our discovery of high DOC yields from these small catchments in the CTR is especially compelling as they deliver relatively fresh, highly terrestrial organic matter directly to the coastal ocean. Hypermaritime landscapes are common on the British Columbia coast, suggesting that this coastal margin may play an important role in the regional processing of carbon and in linking terrestrial carbon to marine ecosystems.


Author(s):  
MARCO MARCELLI ◽  
VIVIANA PIERMATTEI ◽  
RICCARDO GERIN ◽  
FABIO BRUNETTI ◽  
ERMANNO PIETROSEMOLI ◽  
...  

The ability to access user-friendly, low-cost instrumentation remains a limiting factor in coastal ocean observing. The majority of currently available marine observation equipment is difficult to deploy, costly to operate, and requires specific technical skills. Moreover, a harmonized observation program for the world’s coastal waters has not yet been established despite the efforts of the global ocean organizations. Global observational systems are mainly focused on open ocean waters and do not include coastal and shelf areas, where models and satellites require large data sets for their calibration and validation. Fortunately, recent technological advances have created opportunities to improve sensors, platforms, and communications that will enable a step-change in coastal ocean observing, which will be driven by a decreasing cost of the components, the availability of cheap housing, low-cost controller/data loggers based on embedded systems, and low/no subscription costs for LPWAN communication systems. Considering the above necessities and opportunities, POGO’s OpenMODs project identified a series of general needs/requirements to be met in an Open science development framework. In order to satisfy monitoring and research necessities, the sensors to be implemented must be easily interfaced with the data acquisition and transmission system, as well as compliant with accuracy and stability requirements. Here we propose an approach to co-design a cost-effective observing modular instrument architecture based on available low-cost measurement and data transmission technologies, able to be mounted/operated on various platforms. This instrument can fit the needs of a large community that includes scientific research (including those in developing countries), non-scientific stakeholders, and educators.


2015 ◽  
Vol 12 (22) ◽  
pp. 6823-6836 ◽  
Author(s):  
Y. Zhang ◽  
H. Xie

Abstract. Rates and apparent quantum yields of photomineralization (AQYDOC) and photomethanification (AQYCH4) of chromophoric dissolved organic matter (CDOM) in Saguenay River surface water were determined at three widely differing dissolved oxygen concentrations ([O2]) (suboxic, air saturation, and oxygenated) using simulated-solar radiation. Photomineralization increased linearly with CDOM absorbance photobleaching for all three O2 treatments. Whereas the rate of photochemical dissolved organic carbon (DOC) loss increased with increasing [O2], the ratio of fractional DOC loss to fractional absorbance loss showed an inverse trend. CDOM photodegradation led to a higher degree of mineralization under suboxic conditions than under oxic conditions. AQYDOC determined under oxygenated, suboxic, and air-saturated conditions increased, decreased, and remained largely constant with photobleaching, respectively; AQYDOC obtained under air saturation with short-term irradiations could thus be applied to longer exposures. AQYDOC decreased successively from ultraviolet B (UVB) to ultraviolet A (UVA) to visible (VIS), which, alongside the solar irradiance spectrum, points to VIS and UVA being the primary drivers for photomineralization in the water column. The photomineralization rate in the Saguenay River was estimated to be 2.31 × 108 mol C yr−1, accounting for only 1 % of the annual DOC input into this system. Photoproduction of CH4 occurred under both suboxic and oxic conditions and increased with decreasing [O2], with the rate under suboxic conditions ~ 7–8 times that under oxic conditions. Photoproduction of CH4 under oxic conditions increased linearly with photomineralization and photobleaching. Under air saturation, 0.00057 % of the photochemical DOC loss was diverted to CH4, giving a photochemical CH4 production rate of 4.36 × 10−6 mol m−2 yr−1 in the Saguenay River and, by extrapolation, of (1.9–8.1) × 108 mol yr−1 in the global ocean. AQYCH4 changed little with photobleaching under air saturation but increased exponentially under suboxic conditions. Spectrally, AQYCH4 decreased sequentially from UVB to UVA to VIS, with UVB being more efficient under suboxic conditions than under oxic conditions. On a depth-integrated basis, VIS prevailed over UVB in controlling CH4 photoproduction under air saturation while the opposite held true under O2-deficiency. An addition of micromolar levels of dissolved dimethyl sulfide (DMS) substantially increased CH4 photoproduction, particularly under O2-deficiency; DMS at nanomolar ambient concentrations in surface oceans is, however, unlikely a significant CH4 precursor. Results from this study suggest that CDOM-based CH4 photoproduction only marginally contributes to the CH4 supersaturation in modern surface oceans and to both the modern and Archean atmospheric CH4 budgets, but that the photochemical term can be comparable to microbial CH4 oxidation in modern oxic oceans. Our results also suggest that anoxic microniches in particulate organic matter and phytoplankton cells containing elevated concentrations of precursors of the methyl radical such as DMS may provide potential hotspots for CH4 photoproduction.


2013 ◽  
Vol 10 (11) ◽  
pp. 7207-7217 ◽  
Author(s):  
Y. Yamashita ◽  
Y. Nosaka ◽  
K. Suzuki ◽  
H. Ogawa ◽  
K. Takahashi ◽  
...  

Abstract. Chromophoric dissolved organic matter (CDOM) ubiquitously occurs in marine environments and plays a significant role in the marine biogeochemical cycles. Basin scale distributions of CDOM have recently been surveyed in the global ocean and indicate that quantity and quality of oceanic CDOM are mainly controlled by in situ production and photobleaching. However, factors controlling the spectral parameters of CDOM in the UV region, i.e., spectral slope of CDOM determined at 275–295 nm (S275–295) and the ratio of two spectral slope parameters (SR); the ratio of S275–295 to S350–400, have not been well documented. To evaluate the factor controlling the spectral characteristics of CDOM in the UV region in the open ocean, we determined the quantitative and qualitative characteristics of CDOM in the subarctic and subtropical surface waters (5–300 m) of the western North Pacific. Absorption coefficients at 320 nm in the subarctic region were higher than those in the subtropical region throughout surface waters, suggesting that magnitudes of photobleaching were different between the two regions. The values of S275–295 and SR were also higher in the subtropical region than the subarctic region. The dark microbial incubation showed biodegradation of DOM little affected S275–295, but slightly decreased SR. On the other hand, increases in S275–295 and relative stableness of SR were observed during photo-irradiation incubations respectively. These experimental results indicated that photobleaching of CDOM mainly induced qualitative differences in CDOM at UV region between the subarctic and subtropical surface waters. The results of this study imply that S275–295 can be used as a tracer of photochemical history of CDOM in the open ocean.


Sign in / Sign up

Export Citation Format

Share Document