Banach Spaces

Author(s):  
Adel N. Boules

The first four sections of this chapter form its core and include classical topics such as bounded linear transformations, the open mapping theorem, the closed graph theorem, the uniform boundedness principle, and the Hahn-Banach theorem. The chapter includes a good number of applications of the four fundamental theorems of functional analysis. Sections 6.5 and 6.6 provide a good account of the properties of the spectrum and adjoint operators on Banach spaces. They may be largely bypassed, since the treatment of the corresponding topics for operators on Hilbert spaces in chapter 7 is self-contained. The section on weak topologies is more advanced and may be omitted if a brief introduction is the goal. The chapter is enriched by such topics as the best polynomial approximation, the Hilbert cube, Gelfand’s theorem, Schauder bases, complemented subspaces, and the Banach-Alaoglu theorem.

Author(s):  
Sorin Nadaban

In this paper we continue the study of fuzzy continuous mappings in fuzzy normed linear spaces initiated by T. Bag and S.K. Samanta, as well as by I. Sadeqi and F.S. Kia, in a more general settings. Firstly, we introduce the notion of uniformly fuzzy continuous mapping and we establish the uniform continuity theorem in fuzzy settings. Furthermore, the concept of fuzzy Lipschitzian mapping is introduced and a fuzzy version for Banach’s contraction principle is obtained. Finally, a special attention is given to various characterizations of fuzzy continuous linear operators. Based on our results, classical principles of functional analysis (such as the uniform boundedness principle, the open mapping theorem and the closed graph theorem) can be extended in a more general fuzzy context.


Author(s):  
M. Victoria Velasco

AbstractMany authors consider that the main pillars of Functional Analysis are the Hahn–Banach Theorem, the Uniform Boundedness Principle and the Open Mapping Principle. The first one is derived from Zorn’s Lemma, while the latter two usually are obtained from Baire’s Category Theorem. In this paper we show that these three pillars should be either just two or at least eight, since the Uniform Boundedness Principle, the Open Mapping Principle and another five theorems are equivalent, as we show in a very elemental way. Since one can give an almost trivial proof of the Uniform Boundedness Principle that does not require the Baire’s theorem, we conclude that this is also the case for the other equivalent theorems that, in this way, are simultaneously proved in a simple, brief and concise way that sheds light on their nature.


2015 ◽  
Vol 4 (1) ◽  
pp. 1
Author(s):  
Alexander G. Ramm

<p>Assume that <em>A</em> is a closed linear operator defined on all of a Hilbert space <em>H</em>. Then, <em>A</em> is bounded. This classical theorem is proved on the basis of uniform boundedness principle. The proof is easily extended to Banach spaces.</p>


Sign in / Sign up

Export Citation Format

Share Document