French and Belgian Uplands

Author(s):  
Bernard Etlicher

The French Uplands were built by the Hercynian orogenesis. The French Massif Central occupies one-sixth of the area of France and shows various landscapes. It is the highest upland, 1,886 m at the Sancy, and the most complex. The Vosges massif is a small massif, quite similar to the Schwarzwald in Germany, from which it is separated by the Rhine Rift Valley. Near the border of France, Belgium, and Germany, the Ardennes upland has a very moderate elevation. The largest part of this massif lies in Belgium. Though Brittany is partly made up of igneous and metamorphic rocks, it cannot be truly considered as an upland; in the main parts of Brittany, altitudes are lower than in the Parisian basin. Similarities of the landscape in the French and Belgian Uplands derive from two major events: the Oligocene rifting event and the Alpine tectonic phase. The Vosges and the Massif Central are located on the collision zone of the Variscan orogen. In contrast, the Ardennes is in a marginal position where primary sediments cover the igneous basement. Four main periods are defined during the Hercynian orogenesis (Bard et al. 1980; Autran 1984; Ledru et al. 1989; Faure et al. 1997). The early Variscan period corresponds to a subduction of oceanic and continental crust and a highpressure metamorphism (450–400 Ma) The medio- Variscan period corresponds to a continent–continent collision of the chain (400–340 Ma). Metamorphism under middle pressure conditions took place and controlled the formation of many granite plutons: e.g. red granites (granites rouges), porphyroid granite, and granodiorite incorporated in a metamorphic complex basement of various rocks. The neo-Variscan period (340–320 Ma) is characterized by a strong folding event: transcurrent shear zones affected the units of the previous periods and the first sedimentary basins appeared. At the end of this period, late-Variscan (330–280 Ma), autochthonous granites crystallized under low-pressure conditions related to a post-collision thinning of the crust. Velay and Montagne Noire granites are the main massifs generated by this event. Sediment deposition in tectonic basins during Carboniferous and Permian times occurred in the Massif Central and the Vosges: facies are sandstone (Vosges), shale, coal, and sandstone in several Stephanian basins of the Massif Central, with red shale and clay ‘Rougier’ in the south-western part of the Massif Central.

2009 ◽  
Vol 180 (6) ◽  
pp. 473-481 ◽  
Author(s):  
Michel Faure ◽  
Eugène Be Mezeme ◽  
Alain Cocherie ◽  
Jérémie Melleton ◽  
Philippe Rossi

AbstractSeveral episodes of crustal melting are now well identified in the Variscan French Massif Central. Middle Devonian (ca 385-375 Ma) migmatites are recognized in the Upper and Lower Gneiss Units involved in the stack of nappes. Late Carboniferous migmatites (ca 300 Ma) are exposed in the Velay Massif only and Middle Carboniferous migmatites crop out in the Para-autochthonous Unit and southern Fold-and-Thrust Belt. In the SW part of the Massif Central, the South Millevaches massif exposes migmatites developed at the expense of ortho- and paragneiss. They form kilometer-sized septa within the foliated Goulles leucogranitic pluton, which is in turn intruded by the non-foliated Glény two micas granite pluton. Monazite grains extracted from these three rock-types have been dated by the EPMA chemical method. Three samples of migmatite yield a late Visean age (ca 337-328 Ma), the Goulles and Glény granitic plutons yield ages at 324-323 Ma and 324-318 Ma, respectively. These new results enlarge the evidence of a Middle Carboniferous crustal melting imprint that up to now was only reported in the eastern part of the French Massif Central, in the northern Cévennes and in the Montagne Noire axial zone. At the scale of the French Variscan massifs, the Visean crustal melting event is conspicuously developed since it is recognized from the Massif Armoricain (Vendée and south coast of Brittany) to the Central Vosges. This episode is synchronous with the huge thermal event responsible for the “Tuffs anthracifères” magmatism of the northern Massif Central and Vosges, and took place immediately after the last thickening phase recorded both in Montagne Noire and Ardennes, that is on the southern and northern outer zones of the Variscan Belt, respectively. However, the geodynamic significance of this major event is not fully understood yet.


2020 ◽  
Author(s):  
Pavel Rekant ◽  
Oleg Petrov

<p>Base on thorough interpretation of Russian seismic reflection data the sedimentary architecture of Amundsen and Nansen basins was studied. Accordingly, we infer four development stages of the Eurasian Basin (EB) sedimentary system, caused by tectonic evolution of the region.</p><p><strong>Continental break-up stage I</strong> ~120-56 MA leads to formation of 120-130 km wide synrift basins both in the Eastern Amundsen and in the Western Nansen basins. Both basins were floored by extremely extended continental crust. Therefore, the hypothesized continent-ocean boundary (COB) should be placed at the seaward edges of synrift portions of Amundsen and Nansen basins, roughly along the magnetic anomaly #20.</p><p><strong>Spreading</strong> <strong>stage II</strong> (56-34 MA) was characterized by seafloor spreading in the EB as low as 8 mm/year, which was accompanied by expansion of the Amundsen and Nansen sedimentary basins up to their current sizes. The successive expansion of the sedimentary basins which is characteristic of the seafloor spreading basin, was revealed from the architecture of only this sequence, neither underlying nor overlapping. We propose the formation of a Gakkel Ridge rift valley and its infilling with thick sediments sequence during this stage.</p><p><strong>Synoceanic</strong> <strong>stage III</strong> (34-~3 MA) was resulted in the accumulation of the undisturbed Oligocene-Quaternary sediment sequence all over the entire EB. If the non-tectonized architecture of this sequence indicates a calm tectonic regime for the most of the Oligocene-Miocene, the existence of the sediment veneer all over the entire EB proves that sedimentation basin and consequently the oceanic crust domain of modern size were already formed by the beginning of Oligocene.</p><p><strong>Re-spreading stage IV (~3-0 MA)</strong> is characterized by the resumption of seafloor spreading in the Gakkel Ridge axial zone by propagation of the oceanic rift from Norwegian-Greenland basin toward the east.  </p><p>The proposed model of two-stage seafloor spreading in the EB allows us to explain most of the geological issues in this region and is of perfect relation to the known tectonic events along the Arctic periphery.</p><p>In particular: (1) thick sediments sequence in the Eastern and Central (e.g.  at 94°E by Rekant & Gusev, 2016)  Gakkel Ridge rift valley could be explained by the Eocene age of the rift valley, (2) recent spreading resumption could be considered as the cause of the unpredictable high both the hydrothermal activity and volcanism at the Western Gakkel Ridge, (3) the consolidated sand- and siltstones, dredged from the seamount scarp in the middle part of Amundsen Basin (Gaedicke et al., 2019), which thought to be fragments of Mesozoic continental crust, confirm the suggested COB position along magnetic anomaly No.20, (4) the eastward propagation of the ocean rifting along the Gakkel Ridge leads to apparent change of the accentuated high relief morphology of the Western Gakkel Ridge to a smoother ridge morphology of the Eastern Gakkel Ridge as well as to defocusing seismicity at the Eurasia Basin– Laptev Sea transition.</p><p> </p>


2020 ◽  
Vol 776 ◽  
pp. 228316 ◽  
Author(s):  
Françoise Roger ◽  
Christian Teyssier ◽  
Donna L. Whitney ◽  
Jean-Patrick Respaut ◽  
Jean-Louis Paquette ◽  
...  

2012 ◽  
Vol 344 (8) ◽  
pp. 377-384 ◽  
Author(s):  
Pavel Pitra ◽  
Marc Poujol ◽  
Jean Van Den Driessche ◽  
Jean-Charles Poilvet ◽  
Jean-Louis Paquette

2009 ◽  
Vol 180 (3) ◽  
pp. 231-246 ◽  
Author(s):  
Patrick Rolin ◽  
Didier Marquer ◽  
Michel Colchen ◽  
Charles Cartannaz ◽  
Alain Cocherie ◽  
...  

AbstractThe Variscan continental collision has led to the development of large strike-slip shear zones in western Europe. Our study focuses on the regional deformation and shear zone patterns in the Massif Armoricain and the French Massif Central. The synthesis of granite emplacement ages associated to granite deformation fields, allow us to propose a geodynamic model for the tectonic evolution of this part of the Variscan belt between 370 Ma – 320 Ma (Late Devonian – Namurian).After the first steps of the continental subduction-collision, leading to high temperature and anatexis associated with N-S shortening at 380-370 Ma (Frasnian to Famennian), the southern part of the Massif Armoricain and western part of French Massif Central underwent large dextral shearing along N100-N130 trending shear zones up to early Visean time. These large-scale displacements progressively decreased at around 350-340 Ma, during the first emplacements of biotite bearing granites (Moulins-les Aubiers-Gourgé massif and Guéret massif intrusions).During middle Visean times, the shortening axis direction rotated towards a NNE-SSW direction implying changes in the regional deformation field. The occurrence of N070-N100 sinistral and N110-N130 dextral conjugate shear zones within leucogranites are related to that time. Finally, new N150-N160 dextral shear zones appeared in middle to late Visean times: as for examples, the Parthenay and the Pradines shear zones in the SE Massif Armoricain and the Millevaches massif, respectively. These shear zones were conjugated to the sinistral N020 Sillon Houiller in the French Massif Central. They reflect large scale brittle continental indentation in the French Variscan belt during the middle to late Visean.


Tectonics ◽  
2015 ◽  
Vol 34 (8) ◽  
pp. 1709-1735 ◽  
Author(s):  
Mickael Rabin ◽  
Pierre Trap ◽  
Nicolas Carry ◽  
Kevin Fréville ◽  
Bénédicte Cenki-Tok ◽  
...  

2020 ◽  
Vol 38 (3) ◽  
pp. 297-327
Author(s):  
Donna L. Whitney ◽  
Clémentine Hamelin ◽  
Christian Teyssier ◽  
Natalie H. Raia ◽  
Megan S. Korchinski ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document