Optic Nerve Examination

Glaucoma ◽  
2012 ◽  
Author(s):  
Todd E. Woodruff

•Small field of view but increased magnification •Significant degradation of the view from media opacities or small pupil •Lacks ability to perform stereoscopic examination •Useful when slit-lamp exam not possible •Most commonly used system •Variable magnification and field of view • Reasonable view through small pupil • Good stereoscopic view •Less degradation of view from media opacities than direct ophthalmoscope •The magnification and stereopsis obtained with a slit-lamp system is generally superior to that of a handheld or headlamp-based system. • Poor magnification, with wide field of view •Least degradation of view from media opacities •Value of stereopsis limited by poor magnification Fair to poor with small pupils •May be useful for bedside exam or in the operating room • The vertical diameter of the optic nerve can be easily estimated during a slit-lamp exam by the following method: 1. A thin slit beam is focused on the nerve through the lens of choice. 2. The vertical length of the beam is adjusted to match the height of the disc. 3. The length of the beam is read off the slit-lamp beam scale. 4. The scale reading is adjusted by the correction factor of the specific lens. •This estimation is reasonably accurate, but it tends to underestimate disc size in high levels of myopia, and overestimate in high hyperopia. • One can also use the scale projection of the direct ophthalmoscope to estimate nerve head size, with no correction factor needed. The small light cone of the direct ophthalmoscope subtends an angle of about 5 degrees, about the same size as an average optic disc, and can give a quick estimate of relative size. • Stereo-photographs are the most helpful but are more difficult to obtain in a reproducible manner. •Cameras with a prism-based fixed-angle method of taking simultaneous stereo-photos tend to produce more consistent results, but are more expensive. • While non-mydriatic cameras exist, images suffer when the pupil is smaller than 4 mm, and dilation is commonly employed to obtain the best images.

Author(s):  
M. G. Lagally

It has been recognized since the earliest days of crystal growth that kinetic processes of all Kinds control the nature of the growth. As the technology of crystal growth has become ever more refined, with the advent of such atomistic processes as molecular beam epitaxy, chemical vapor deposition, sputter deposition, and plasma enhanced techniques for the creation of “crystals” as little as one or a few atomic layers thick, multilayer structures, and novel materials combinations, the need to understand the mechanisms controlling the growth process is becoming more critical. Unfortunately, available techniques have not lent themselves well to obtaining a truly microscopic picture of such processes. Because of its atomic resolution on the one hand, and the achievable wide field of view on the other (of the order of micrometers) scanning tunneling microscopy (STM) gives us this opportunity. In this talk, we briefly review the types of growth kinetics measurements that can be made using STM. The use of STM for studies of kinetics is one of the more recent applications of what is itself still a very young field.


2020 ◽  
Vol 13 (6) ◽  
pp. 1-9
Author(s):  
XU Hong-gang ◽  
◽  
HAN Bing ◽  
LI Man-li ◽  
MA Hong-tao ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
J. Li ◽  
Q. S. Ran ◽  
B. Hao ◽  
X. Xu ◽  
H. F. Yuan

The endoscopic transethmoidal approach is favored for the lack of external scars, a wide field of view, and rapid recovery time. But the effect of iatrogenic trauma should not be ignored due to the removal of the uncinate process and anterior and posterior ethmoidal sinus. Anatomically, the optic nerve is close to the sphenoid sinus and Onodi cell. In order to preserve the uncinate process and ethmoidal sinus, we perform endoscopic transsphenoidal optic canal decompression (ETOCD), which is less invasive. However, the anatomy of sphenoid sinus is quite variable, and the anatomical landmarks are rare. Therefore, identifying the position of optic canal is particularly important during surgery. To solve this, we use a postprocessing technique to identify the position of the optic nerve and internal carotid artery on the sphenoid sinus wall. Our results find that VA in 13 patients improved, with a total improve rate of 59.1%. No serious complications were found. We also found that the length of optic canal is different and the medial wall of the optic canal was the longest (p<0.05). The middle section of the optic canal is the narrowest, which was significantly different from cranial mouth and orbital mouth (p<0.05). We assumed that decompression may not require removal of all medial wall. If we remove the length of the shortest wall on the medial wall of the optic canal, the compression may be relieved. Thus, ETOCD was a feasible, safe, effective, and less-invasive approach for patients with TON. The CT postprocessing imaging facilitated recognition of the optic canal during surgery. The decompression length of the medial wall may not need to be completely removed, especially near the cranial mouth.


2012 ◽  
Vol 100 (13) ◽  
pp. 133701 ◽  
Author(s):  
Hewei Liu ◽  
Feng Chen ◽  
Qing Yang ◽  
Pubo Qu ◽  
Shengguan He ◽  
...  

Lab on a Chip ◽  
2010 ◽  
Vol 10 (7) ◽  
pp. 824 ◽  
Author(s):  
Ahmet F. Coskun ◽  
Ting-Wei Su ◽  
Aydogan Ozcan

2018 ◽  
Vol 57 (15) ◽  
pp. 4171 ◽  
Author(s):  
Shingo Kashima ◽  
Masashi Hazumi ◽  
Hiroaki Imada ◽  
Nobuhiko Katayama ◽  
Tomotake Matsumura ◽  
...  

Optik ◽  
2016 ◽  
Vol 127 (14) ◽  
pp. 5636-5646 ◽  
Author(s):  
Hyungtae Kim ◽  
Jaehoon Jung ◽  
Joonki Paik

2012 ◽  
Vol 5 (2) ◽  
pp. 2169-2220 ◽  
Author(s):  
A. M. Sayer ◽  
N. C. Hsu ◽  
C. Bettenhausen ◽  
M.-J. Jeong ◽  
B. N. Holben ◽  
...  

Abstract. This study evaluates a new spectral aerosol optical depth (AOD) dataset derived from Sea-viewing Wide Field-of-view Sensor (SeaWiFS) measurements over land. First, the data are validated against Aerosol Robotic Network (AERONET) direct-sun AOD measurements, and found to compare well on a global basis. If only data with the highest quality flag are used, the correlation is 0.86 and 72% of matchups fall within an expected absolute uncertainty of 0.05 + 20% (for the wavelength of 550 nm). The quality is similar at other wavelengths and stable over the 13-yr (1997–2010) mission length. Performance tends to be better over vegetated, low-lying terrain with typical AOD of 0.3 or less, such as found over much of North America and Eurasia. Performance tends to be poorer for low-AOD conditions near backscattering geometries, where SeaWiFS overestimates AOD, or optically-thick cases of absorbing aerosol, where SeaWiFS tends to underestimate AOD. Second, the SeaWiFS data are compared with midvisible AOD derived from the Moderate Resolution Imaging Spectrometer (MODIS) and Multiangle Imaging Spectroradiometer (MISR). All instruments show similar spatial and seasonal distributions of AOD, although there are regional and seasonal offsets between them. At locations where AERONET data are available, these offsets are largely consistent with the known validation characteristics of each dataset. With the results of this study in mind, the SeaWiFS over-land AOD record is suitable for quantitative scientific use.


Sign in / Sign up

Export Citation Format

Share Document