Duality beyondPersons and Groups

Author(s):  
Sophie Mützel ◽  
Ronald Breiger

This chapter focuses on the general principle of duality, which was originally introduced by Simmel as the intersection of social circles. In a seminal article, Breiger formalized Simmel’s idea, showing how two-mode types of network data can be transformed into one-mode networks. This formal translation proved to be fundamental for social network analysis, which no longer needed data on who interacted with whom but could work with other types of data. In turn, it also proved fundamental for the analysis of how the social is structured in general, as many relations are dual (e.g. persons and groups, authors and articles, organizations and practices), and are thus susceptible to an analysis according to duality principles. The chapter locates the concept of duality within past and present sociology. It also discusses the use of duality in the analysis of culture as well as in affiliation networks. It closes with recent developments and future directions.

2020 ◽  
Vol 13 (4) ◽  
pp. 503-534
Author(s):  
Mehmet Ali Köseoğlu ◽  
John Parnell

PurposeThe authors evaluate the evolution of the intellectual structure of strategic management (SM) by employing a document co-citation analysis through a network analysis for academic citations in articles published in the Strategic Management Journal (SMJ).Design/methodology/approachThe authors employed the co-citation analysis through the social network analysis.FindingsThe authors outlined the evolution of the academic foundations of the structure and emphasized several domains. The economic foundation of SM research with macro and micro perspectives has generated a solid knowledge stock in the literature. Industrial organization (IO) psychology has also been another dominant foundation. Its robust development and extension in the literature have focused on cognitive issues in actors' behaviors as a behavioral foundation of SM. Methodological issues in SM research have become dominant between 2004 and 2011, but their influence has been inconsistent. The authors concluded by recommending future directions to increase maturity in the SM research domain.Originality/valueThis is the first paper to elucidate the intellectual structure of SM by adopting the co-citation analysis through the social network analysis.


E-Marketing ◽  
2012 ◽  
pp. 185-197
Author(s):  
Przemyslaw Kazienko ◽  
Piotr Doskocz ◽  
Tomasz Kajdanowicz

The chapter describes a method how to perform a classification task without any demographic features and based only on the social network data. The concept of such collective classification facilitates to identify potential customers by means of services used or products purchased by the current customers, i.e. classes they belong to as well as using social relationships between the known and potential customers. As a result, a personalized offer can be prepared for the new clients. This innovative marketing method can boost targeted marketing campaigns.


Author(s):  
Przemyslaw Kazienko ◽  
Piotr Doskocz ◽  
Tomasz Kajdanowicz

The chapter describes a method how to perform a classification task without any demographic features and based only on the social network data. The concept of such collective classification facilitates to identify potential customers by means of services used or products purchased by the current customers, i.e. classes they belong to as well as using social relationships between the known and potential customers. As a result, a personalized offer can be prepared for the new clients. This innovative marketing method can boost targeted marketing campaigns.


Author(s):  
Preeti Gupta ◽  
Vishal Bhatnagar

The social network analysis is of significant interest in various application domains due to its inherent richness. Social network analysis like any other data analysis is limited by the quality and quantity of data and for which data preprocessing plays the key role. Before the discovery of useful information or pattern from the social network data set, the original data set must be converted to a suitable format. In this chapter we present various phases of social network data preprocessing. In this context, the authors discuss various challenges in each phase. The goal of this chapter is to illustrate the importance of data preprocessing for social network analysis.


Methodology ◽  
2006 ◽  
Vol 2 (1) ◽  
pp. 2-6 ◽  
Author(s):  
Marijtje A. J. van Duijn ◽  
Jeroen K. Vermunt

In a short introduction on social network analysis, the main characteristics of social network data as well as the main goals of social network analysis are described. An overview of statistical models for social network data is given, pointing at differences and similarities between the various model classes and introducing the most recent developments in social network modeling.


Social networks fundamentally shape our lives. Networks channel the ways that information, emotions, and diseases flow through populations. Networks reflect differences in power and status in settings ranging from small peer groups to international relations across the globe. Network tools even provide insights into the ways that concepts, ideas and other socially generated contents shape culture and meaning. As such, the rich and diverse field of social network analysis has emerged as a central tool across the social sciences. This Handbook provides an overview of the theory, methods, and substantive contributions of this field. The thirty-three chapters move through the basics of social network analysis aimed at those seeking an introduction to advanced and novel approaches to modeling social networks statistically. The Handbook includes chapters on data collection and visualization, theoretical innovations, links between networks and computational social science, and how social network analysis has contributed substantively across numerous fields. As networks are everywhere in social life, the field is inherently interdisciplinary and this Handbook includes contributions from leading scholars in sociology, archaeology, economics, statistics, and information science among others.


2015 ◽  
Vol 6 (1) ◽  
pp. 30-34 ◽  
Author(s):  
Iraj Mohammadfam ◽  
Susan Bastani ◽  
Mahbobeh Esaghi ◽  
Rostam Golmohamadi ◽  
Ali Saee

Author(s):  
Maria Isabel Escalona-Fernandez ◽  
Antonio Pulgarin-Guerrero ◽  
Ely Francina Tannuri de Oliveira ◽  
Maria Cláudia Cabrini Gracio

This paper analyses the scientific collaboration network formed by the Brazilian universities that investigate in dentistry area. The constructed network is based on the published documents in the Scopus (Elsevier) database covering a period of 10 (ten) years. It is used social network analysis as the best methodological approach to visualize the capacity for collaboration, dissemination and transmission of new knowledge among universities. Cohesion and density of the collaboration network is analyzed, as well as the centrality of the universities as key-actors and the occurrence of subgroups within the network. Data were analyzed using the software UCINET and NetDraw. The number of documents published by each university was used as an indicator of its scientific production.


Sign in / Sign up

Export Citation Format

Share Document