scholarly journals Modulating D-amino acid oxidase substrate specificity: production of an enzyme for analytical determination of all D-amino acids by directed evolution

2004 ◽  
Vol 17 (6) ◽  
pp. 517-525 ◽  
Author(s):  
S. Sacchi ◽  
E. Rosini ◽  
G. Molla ◽  
M. S. Pilone ◽  
L. Pollegioni
1969 ◽  
Vol 15 (2) ◽  
pp. 154-161 ◽  
Author(s):  
K Van Dyke ◽  
C Szustkiewicz

Abstract An automated system for the determination of the L-α form of the majority of amino acids is presented. The method is based upon oxidative deamination of the amino acid coupled with oxidation of o-dianisidine by hydrogen peroxide. This procedure can be used comparatively for the determination of a mixture of L-α-amino acids or for the majority of separated L-α-amino acids (especially in conjunction with column separations from urine and blood which give falsely positive identification with ninhydrin detection). The stereospecific nature of the L-α-amino acid oxidase enables the investigator to quantitate the amount of L-α-amino acid in the presence of the D-α form. From an academic viewpoint, the extreme sensitivity and wide range of the detection system make it advantageous for the study of the enzyme itself. This automated method also may be employed to follow enzymatic reactions—e.g., those catalyzed by peptidases or racemases. The methodology is extremely convenient with good reagent stability and is much more sensitive than manometric technics.


2005 ◽  
Vol 71 (7) ◽  
pp. 3551-3555 ◽  
Author(s):  
Meryl A. Davis ◽  
Marion C. Askin ◽  
Michael J. Hynes

ABSTRACT The filamentous fungus Aspergillus nidulans can use a wide range of compounds as nitrogen sources. The synthesis of the various catabolic enzymes needed to breakdown these nitrogen sources is regulated by the areA gene, which encodes a GATA transcription factor required to activate gene expression under nitrogen-limiting conditions. The areA102 mutation results in pleiotropic effects on nitrogen source utilization, including better growth on certain amino acids as nitrogen sources. Mutations in the sarA gene were previously isolated as suppressors of the strong growth of an areA102 strain on l-histidine as a sole nitrogen source. We cloned the sarA gene by complementation of a sarA mutant and showed that it encodes an l-amino acid oxidase enzyme with broad substrate specificity. Elevated expression of this enzyme activity in an areA102 background accounts for the strong growth of these strains on amino acids that are substrates for this enzyme. Loss of function sarA mutations, which abolish the l-amino acid oxidase activity, reverse the areA102 phenotype. Growth tests with areA102 and sarA mutants show that this enzyme is the primary route of catabolism for some amino acids, while other amino acids are metabolized through alternative pathways that yield either ammonium or glutamate for growth.


1998 ◽  
Vol 12 (2) ◽  
pp. 149-153 ◽  
Author(s):  
Silvia Sacchi ◽  
Loredano Pollegioni ◽  
Mirella S. Pilone ◽  
Carlo Rossetti

Sign in / Sign up

Export Citation Format

Share Document