scholarly journals Influence of genetic selection for antibody production against sheep blood cells on energy metabolism in laying hens

2000 ◽  
Vol 79 (4) ◽  
pp. 519-524 ◽  
Author(s):  
M.M. Mashaly ◽  
M.J. Heetkamp ◽  
H.K. Parmentier ◽  
J.W. Schrama
Author(s):  
G. BIOZZI ◽  
C. STIFFEL ◽  
D. MOUTON ◽  
Y. BOUTHILLIER ◽  
C. DECREUSEFOND

Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 736
Author(s):  
Christina Walz ◽  
Julia Brenmoehl ◽  
Nares Trakooljul ◽  
Antonia Noce ◽  
Caroline Caffier ◽  
...  

It is assumed that crosstalk of central and peripheral tissues plays a role in the adaptive response to physical activity and exercise. Here, we wanted to study the effects of training and genetic predisposition in a marathon mouse model on mRNA expression in the pituitary gland. Therefore, we used a mouse model developed by phenotype selection for superior running performance (DUhTP) and non-inbred control mice (DUC). Both mouse lines underwent treadmill training for three weeks or were kept in a sedentary condition. In all groups, total RNA was isolated from the pituitary gland and sequenced. Molecular pathway analysis was performed by ingenuity pathway analysis (IPA). Training induced differential expression of 637 genes (DEGs) in DUC but only 50 DEGs in DUhTP mice. Genetic selection for enhanced running performance strongly affected gene expression in the pituitary gland and identified 1732 DEGs in sedentary DUC versus DUhTP mice. Training appeared to have an even stronger effect on gene expression in both lines and comparatively revealed 3828 DEGs in the pituitary gland. From the list of DEGs in all experimental groups, candidate genes were extracted by comparison with published genomic regions with significant effects on training responses in mice. Bioinformatic modeling revealed induction and coordinated expression of the pathways for ribosome synthesis and oxidative phosphorylation in DUC mice. By contrast, DUhTP mice were resistant to the positive effects of three-week training on protein and energy metabolism in the pituitary gland.


2021 ◽  
Author(s):  
Annie Claessens ◽  
Marie Bipfubusa ◽  
Caroline Chouinard‐Michaud ◽  
Annick Bertrand ◽  
Gaëtan F. Tremblay ◽  
...  

Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 519
Author(s):  
Shajahan Ferosekhan ◽  
Serhat Turkmen ◽  
Cathaysa Pérez-García ◽  
Hanlin Xu ◽  
Ana Gómez ◽  
...  

Genetic selection in gilthead seabream (GSB), Sparus aurata, has been undertaken to improve the growth, feed efficiency, fillet quality, skeletal deformities and disease resistance, but no study is available to delineate the effect of genetic selection for growth trait on GSB reproductive performance under mass spawning condition. In this study, high growth (HG) or low growth (LG) GSB broodstock were selected to evaluate the sex steroid hormones, sperm, egg quality and reproductive performance under different feeding regime of commercial diet or experimental broodstock diet containing either fish oil (FO) or vegetable oil (VO) based diet. Under commercial diet feeding phase, broodstock selected for either high growth or low growth did not show any significant changes in the egg production per kg female whereas egg viability percentage was positively (p = 0.014) improved by the high growth trait broodstock group. The experimental diet feeding results revealed that both growth trait and dietary fatty acid composition influenced the reproductive performance of GSB broodstock. In the experimental diet feeding phase, we observed high growth trait GSB males produced a higher number of sperm cells (p < 0.001) and also showed a higher sperm motility (p = 0.048) percentage. The viable egg and larval production per spawn per kg female were significantly improved by the broodstock selected for high growth trait and fed with fish oil-based diet. This present study results signifies that gilthead seabream broodstock selected on growth trait could have positive role in improvement of sperm and egg quality to produce viable progeny.


Botany ◽  
2015 ◽  
Vol 93 (5) ◽  
pp. 307-316 ◽  
Author(s):  
L.I. Lindström ◽  
L.F. Hernández

In sunflower (Helianthus annuus L.), there has been an intense genetic selection for achenes with agronomic value, such as greater mass, oil content, and disease resistance. However, the information regarding the anatomical events that control their growth and maturation is surprisingly scarce. The aim of the present work was to study sunflower male and female sporogenesis and gametogenesis, as well as cell division and enlargement and tissue differentiation in the ovary and the embryo, linking the timing of these events to two frequently used phenological scales and a thermal time scale. In addition, we propose an ontogenetic scale that integrates the results of the present work to that of previous studies on sunflower reproductive development. The unified scales presented here provide a framework for others to investigate the relationships uncovered in this study in different genetic backgrounds and under different growing conditions.


Sign in / Sign up

Export Citation Format

Share Document