scholarly journals Porous tantalum composited gelatin nanoparticles hydrogel integrated with mesenchymal stem cell-derived endothelial cells to construct vascularized tissue in vivo

2021 ◽  
Author(s):  
Zhenhua Zhao ◽  
Mang Wang ◽  
Fei Shao ◽  
Ge Liu ◽  
Junlei Li ◽  
...  

Abstract The ideal scaffold material of angiogenesis should have mechanical strength and provide appropriate physiological microporous structures to mimic the extracellular matrix environment. In this study, we constructed an integrated three-dimensional scaffold material using porous tantalum(pTa), gelatin nanoparticles (GNPs) hydrogel, and seeded with bone marrow mesenchymal stem cells (BMSCs)-derived endothelial cells (ECs) for vascular tissue engineering. The characteristics and biocompatibility of pTa and GNPs hydrogel were evaluated by mechanical testing, scanning electron microscopy, cell counting kit, and live-cell assay. The BMSCs-derived ECs were identified by flow cytometry and angiogenesis assay. BMSCs-derived ECs were seeded on the pTa-GNPs hydrogel scaffold and implanted subcutaneously in nude mice. Four weeks after the operation, the scaffold material was evaluated by histomorphology. The superior biocompatible ability of pTa-GNPs hydrogel scaffold was observed. Our in vivo results suggested that 28 days after implantation, the formation of the stable capillary-like network in scaffold material could be promoted significantly. The novel, integrated pTa-GNPs hydrogel scaffold is biocompatible with the host, and exhibits biomechanical and angiogenic properties. Moreover, combined with BMSCs-derived ECs, it could construct vascular engineered tissue in vivo. This study may provide a basis for applying pTa in bone regeneration and autologous BMSCs in tissue-engineered vascular grafts.

2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Ha-Rim Seo ◽  
Hyo Eun Jeong ◽  
Hyung Joon Joo ◽  
Seung-Cheol Choi ◽  
Jong-Ho Kim ◽  
...  

Background: Human body contains many kinds of different type of endothelial cells (EC). However, cellular difference of their angiogenic potential has been hardly understood. We compared in vitro angiogenic potential between arterial EC and venous EC and investigated its underlying molecular mechanisms. Method: Used human aortic endothelial cells (HAEC) which was indicated from arterial EC and human umbilical vein endothelial cells (HUVEC) indicated from venous EC. To explore angiogenic potential in detail, we adopted a novel 3D microfluidic angiogenesis assay system, which closely mimic in vivo angiogenesis. Results: In 3D microfluidic angiogenesis assay system, HAEC demonstrated stronger angiogenic potential compared to HUVEC. HAEC maintained its profound angiogenic property under different biophysical conditions. In mRNA microarray sorted on up- regulated or down-regulated genes, HAEC demonstrated significantly higher expression of gastrulation brain homeobox 2 (GBX2), fibroblast grow factor 2 (FGF2), FGF5 and collagen 8a1. Angiogenesis-related protein assay revealed that HAEC has higher secretion of endogenous FGF2 than HUVEC. HAEC has only up-regulated FGF2 and FGF5 in this part of FGF family. Furthermore, FGF5 expression under vascular endothelial growth factor-A (VEGF-A) stimulation was higher in HAEC compared to HUVEC although VEGF-A augmented FGF5 expression in both HAEC and HUVEC. Those data suggested that FGF5 expression in both HAEC and HUVEC is partially dependent to VEGF-A stimulate. HUVEC and HAEC reduced vascular density after FGF2 and FGF5 siRNA treat. Conclusion: HAEC has stronger angiogenic potential than HUVEC through up-regulation of endogenous FGF2 and FGF5 expression


2015 ◽  
Vol 35 (suppl_1) ◽  
Author(s):  
Bin Ren ◽  
Brad Best ◽  
Devi Ramakrishnan ◽  
Brian Walcott ◽  
Peter Storz ◽  
...  

Background: CD36 is a scavenger and antiangiogenic receptor that plays an important role in athero-thrombotic diseases, diabetes and cancer and contributes to obesity. Lysophosphatidic acid (LPA), a bioactive phospholipid signaling mediator, abolishes endothelial cell responses to antiangiogenic proteins containing thrombospondin type 1 homology domains by down-regulating endothelial CD36 transcription via protein kinase PKD-1 signaling. However, the precise mechanism as to how angiogenic signaling is integrated to regulate endothelial specific CD36 transcription remain unknown. Hypothesis: LPA represses CD36 transcription through PKD-1-mediated formation of a nuclear transcriptional complex in endothelial cells. Methods: Microvascular endothelial cells expressing CD36 were used for studying signaling and CD36 transcription by real time RT-qPCR, Western blotting, co-immunoprecipitation or avidin-biotin-conjugated DNA-binding assay; angiogenesis gene array was used for angiogenic gene profiling in response to LPA exposure. Spheroid-based angiogenesis assay, in vivo Matrigel assay and tumor angiogenesis model in CD36 deficiency and wild type mice were established to elucidate mechanisms of angiogenic signaling. Results: CD36 transcriptional repression involved PKD-1 signaling mediated formation of FoxO1-HDAC7 complex in the nucleus of endothelial cells. Unexpectedly, turning off CD36 transcription initiated reprogramming MVECs to express ephrin B2, a critical “molecular signature” involved in angiogenesis and arteriogenesis, and increased phosphorylation of Erk1/2, the MAP kinase important in arterial differentiation. PKD-1 signaling was also shown in tumor endothelium of Lewis lung carcinomas, along with low CD36 expression or CD36 deficiency. Angiogenic branching morphogenesis and in vivo angiogenesis were dependent on PKD-1 signaling. Conclusion: LPA/PKD1-HDAC7-FoxO1 signaling axis regulates endothelial CD36 transcription and mediates silencing of the antiangiogenic switch, resulting in proarteriogenic reprogramming. Targeting this signaling cascade could be a novel approach for cancer, diabetes, athero-thrombotic diseases and obesity.


1983 ◽  
Vol 60 (1) ◽  
pp. 89-102
Author(s):  
D de Bono ◽  
C. Green

The interactions between human or bovine vascular endothelial cells and fibroblast-like vascular intimal spindle-shaped cells have been studied in vitro, using species-specific antibodies to identify the different components in mixed cultures. Pure cultures of endothelial cells grow as uniform, nonoverlapping monolayers, but this growth pattern is lost after the addition of spindle cells, probably because the extracellular matrix secreted by the latter causes the endothelial cells to modify the way they are attached to the substrate. The result is a network of tubular aggregates of endothelial cells in a three-dimensional ‘polylayer’ of spindle-shaped cells. On the other hand, endothelial cells added to growth-inhibited cultures of spindle-shaped cells will grow in sheets over the surface of the culture. Human endothelial cells grown in contact with spindle-shaped cells have a reduced requirement for a brain-derived endothelial growth factor. The interactions of endothelial cells and other connective tissue cells in vitro may be relevant to the mechanisms of endothelial growth and blood vessel formation in vivo, and emphasize the potential importance of extracellular matrix in controlling endothelial cell behaviour.


Author(s):  
Leonie Rouleau ◽  
Joanna Rossi ◽  
Jean-Claude Tardif ◽  
Rosaire Mongrain ◽  
Richard L. Leask

Endothelial cells (ECs) are believed to respond differentially to hemodynamic forces in the vascular tree. Once atherosclerotic plaque has formed in a vessel, the obstruction creates complex spatial gradients in wall shear stress (WSS). In vitro models have used mostly unrealistic and simplified geometries, which cannot reproduce accurately physiological conditions. The objective of this study was to expose ECs to the complex WSS pattern created by an asymmetric stenosis. Endothelial cells were grown and exposed for different times to physiological steady flows in straight dynamic controls and in idealized asymmetric stenosis models. Cell morphology was noticeably different in the regions with spatial WSS gradients, being more randomly oriented and of cobblestone shape. Inflammatory molecule expression was also altered by exposure to shear and endothelial nitric oxide synthase (eNOS) was upregulated by its presence. A regional response in terms of inflammation was observed through confocal microscopy. This work provides a more realistic model to study endothelial cell response to spatial and temporal WSS gradients that are present in vivo and is an important advancement towards a better understanding of the mechanisms involved in coronary artery disease.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Yan Chen ◽  
Songjian Li ◽  
Xiaoming Li ◽  
Yichen Zhang ◽  
Zhi Huang ◽  
...  

To meet the challenges of designing anin situforming scaffold and regenerating bone with complex three-dimensional (3D) structures, anin situforming hydrogel scaffold based on nano-hydroxyapatite (nHA), collagen (Col), and chitosan (CS) was synthesized. Currently, only a limited number of techniques are available to mediate and visualize the injection process of the injectable biomaterials directly and noninvasively. In this study, the potential of ultrasound for the quantitativein vivoevaluation of tissue development in CS/nHAC scaffold was evaluated. The CS/nHAC scaffold was injected into rat subcutaneous tissue and evaluated for 28 days. Quantitative measurements of the gray-scale value, volume, and blood flow of the scaffold were evaluated using diagnostic technique. This study demonstrates that ultrasound can be used to noninvasively and nondestructively monitor and evaluate thein vivocharacteristics of injectable bone scaffold. In comparison to the CS, the CS/nHAC scaffold showed a greater stiffness, less degradation rate, and better blood supply in thein vivoevaluation. In conclusion, the diagnostic ultrasound method is a good tool to evaluate thein vivoformation of injectable bone scaffolds and facilitates the broad use to monitor tissue development and remodeling in bone tissue engineering.


Blood ◽  
2005 ◽  
Vol 105 (7) ◽  
pp. 2836-2844 ◽  
Author(s):  
Tao Wang ◽  
Yvona Ward ◽  
Linhua Tian ◽  
Ross Lake ◽  
Liliana Guedez ◽  
...  

AbstractCD97, a membrane protein expressed at high levels on inflammatory cells and some carcinomas, is a member of the adhesion G protein–coupled receptor family, whose members have bipartite structures consisting of an extracellular peptide containing adhesion motifs noncovalently coupled to a class B 7-transmembrane domain. CD97α, the extracellular domain of CD97, contains 3 to 5 fibrillin class 1 epidermal growth factor (EGF)–like repeats, an Arg-Gly-Asp (RGD) tripeptide, and a mucin stalk. We show here that CD97α promotes angiogenesis in vivo as demonstrated with purified protein in a directed in vivo angiogenesis assay (DIVAA) and by enhanced vascularization of developing tumors expressing CD97. These data suggest that CD97 can contribute to angiogenesis associated with inflammation and tumor progression. Strong integrin α5β1 interactions with CD97 have been identified, but αvβ3 also contributes to cell attachment. Furthermore, soluble CD97 acts as a potent chemoattractant for migration and invasion of human umbilical vein endothelial cells (HUVECs), and this function is integrin dependent. CD97 EGF-like repeat 4 is known to bind chondroitin sulfate. It was found that coengagement of α5β1 and chondroitotin sulfate proteoglycan by CD97 synergistically initiates endothelial cell invasion. Integrin α5β1 is the first high-affinity cellular counterreceptor that has been identified for a member within this family of adhesion receptors.


Author(s):  
H. Kerdjoudj ◽  
V. Moby ◽  
N. Berthelemy ◽  
J. C. Voegel ◽  
P. Menu ◽  
...  

Vascular diseases with their high morbidity and mortality are a major challenge for medical science, engaging the best minds in modern medicine. The development of antithrombogenic surfaces still remains a huge challenge in the vascular tissue engineering field. Various researchers have expanded surface coating procedures allowing endothelial cells (EC) adhesion and retention on vascular substitutes or by incorporating some of the mechanisms employed by vascular endothelial cells i.e. heparin. The short in vivo patency of these grafts is related. Our group study evaluates a new surface modification based on polyelectrolyte building. The layer by layer self assembly and the result in polyelectrolyte multilayer films (PEM) became also in a recent past a challenging, simple and versatile way to engineer surfaces with highly specific properties. Previous studies indicated that the poly(sodium-4 styrene sulfonate)/poly (allylamine hydrochloride) PSS/PAH multilayered films when ended by PAH induce strong adhesion and retention of mature EC which spread and keep their phenotype as well on glass [1,2], on expanded polytetrafluoroethylene ePTFE [3] and on cryopreserved arteries [4,5]. The mechanical properties (compliance), leading to early intimal hyperplasia and graft failure, were lost after artery cryopreservation. We have demonstrated the compliance restoration of PEM treated cryopreserved close to native arteries [5]. The use of an autologous EC source avoids the immunological rejections of the grafts. With an autologous origin, high proliferation capacity and potentialities to proliferate and differentiate into matures EC, the endothelial progenitor cells (EPC) have raised huge interest and offer new opportunities in vascular engineering. Currents protocols for isolation and differentiation of EPC from peripheral blood requires at least 1 month to observe an endothelium-like morphology and about 2 months for confluent EC monolayer. The EPC cultivated on PEM treated glasses showed a monolayer development after only 14 days of culture. The morphological appearance and mature phenotype markers expression and repartition of the monolayer cells are close to mature EC [6]. These main results have led to French patent deposit in June 2007[7].


1983 ◽  
Vol 97 (5) ◽  
pp. 1648-1652 ◽  
Author(s):  
R Montesano ◽  
L Orci ◽  
P Vassalli

We have studied the behavior of cloned capillary endothelial cells grown inside a three dimensional collagen matrix. Cell monolayers established on the surface of collagen gels were covered with a second layer of collagen. This induced the monolayers of endothelial cells to reorganize into a network of branching and anastomosing capillary-like tubes. As seen by electron microscopy, the tubes were formed by at least two cells (in transverse sections) delimiting a narrow lumen. In addition, distinct basal lamina material was present between the abluminal face of the endothelial cells and the collagen matrix. These results showed that capillary endothelial cells have the capacity to form vessel-like structures with well-oriented cell polarity in vitro. They also suggest that an appropriate topological relationship of endothelial cells with collagen matrices, similar to that occurring in vivo, has an inducive role on the expression of this potential. This culture system provides a simple in vitro model for studying the factors involved in the formation of new blood vessels (angiogenesis).


2002 ◽  
Vol 283 (5) ◽  
pp. C1501-C1510 ◽  
Author(s):  
Nikos E. Tsopanoglou ◽  
Paraskevi Andriopoulou ◽  
Michael E. Maragoudakis

Thrombin has been reported to be a potent angiogenic factor both in vitro and in vivo, and many of the cellular effects of thrombin may contribute to activation of angiogenesis. In this report we show that thrombin-treatment of human endothelial cells increases mRNA and protein levels of αvβ3-integrin. This thrombin-mediated effect is specific, dose dependent, and requires the catalytic site of thrombin. In addition, thrombin interacts with αvβ3as demonstrated by direct binding of αvβ3protein to immobilized thrombin. This interaction of thrombin with αvβ3-integrin, which is an angiogenic marker in vascular tissue, is of functional significance. Immobilized thrombin promotes endothelial cells attachment, migration, and survival. Antibody to αvβ3or a specific peptide antagonist to αvβ3can abolish all these αvβ3-mediated effects. Furthermore, in the chick chorioallantoic membrane system, the antagonist peptide to αvβ3diminishes both basal and the thrombin-induced angiogenesis. These results support the pivotal role of thrombin in activation of endothelial cells and angiogenesis and may be related to the clinical observation of neovascularization within thrombi.


Sign in / Sign up

Export Citation Format

Share Document