scholarly journals Resting-state brain network topological properties and the correlation with neuropsychological assessment in adolescent narcolepsy

SLEEP ◽  
2020 ◽  
Vol 43 (8) ◽  
Author(s):  
Xiao Fulong ◽  
Spruyt Karen ◽  
Lu Chao ◽  
Zhao Dianjiang ◽  
Zhang Jun ◽  
...  

Abstract Study Objectives To evaluate functional connectivity and topological properties of brain networks, and to investigate the association between brain topological properties and neuropsychiatric behaviors in adolescent narcolepsy. Methods Resting-state functional magnetic resonance imaging (fMRI) and neuropsychological assessment were applied in 26 adolescent narcolepsy patients and 30 healthy controls. fMRI data were analyzed in three ways: group independent component analysis and a graph theoretical method were applied to evaluate topological properties within the whole brain. Lastly, network-based statistics was utilized for group comparisons in region-to-region connectivity. The relationship between topological properties and neuropsychiatric behaviors was analyzed with correlation analyses. Results In addition to sleepiness, depressive symptoms and impulsivity were detected in adolescent narcolepsy. In adolescent narcolepsy, functional connectivity was decreased between regions of the limbic system and the default mode network (DMN), and increased in the visual network. Adolescent narcolepsy patients exhibited disrupted small-world network properties. Regional alterations in the caudate nucleus (CAU) and posterior cingulate gyrus were associated with subjective sleepiness and regional alterations in the CAU and inferior occipital gyrus were associated with impulsiveness. Remodeling within the salience network and the DMN was associated with sleepiness, depressive feelings, and impulsive behaviors in narcolepsy. Conclusions Alterations in brain connectivity and regional topological properties in narcoleptic adolescents were associated with their sleepiness, depressive feelings, and impulsive behaviors.

PLoS ONE ◽  
2011 ◽  
Vol 6 (9) ◽  
pp. e25423 ◽  
Author(s):  
Qingbao Yu ◽  
Jing Sui ◽  
Srinivas Rachakonda ◽  
Hao He ◽  
William Gruner ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Gregory Simchick ◽  
Kelly M. Scheulin ◽  
Wenwu Sun ◽  
Sydney E. Sneed ◽  
Madison M. Fagan ◽  
...  

AbstractFunctional magnetic resonance imaging (fMRI) has significant potential to evaluate changes in brain network activity after traumatic brain injury (TBI) and enable early prognosis of potential functional (e.g., motor, cognitive, behavior) deficits. In this study, resting-state and task-based fMRI (rs- and tb-fMRI) were utilized to examine network changes in a pediatric porcine TBI model that has increased predictive potential in the development of novel therapies. rs- and tb-fMRI were performed one day post-TBI in piglets. Activation maps were generated using group independent component analysis (ICA) and sparse dictionary learning (sDL). Activation maps were compared to pig reference functional connectivity atlases and evaluated using Pearson spatial correlation coefficients and mean ratios. Nonparametric permutation analyses were used to determine significantly different activation areas between the TBI and healthy control groups. Significantly lower Pearson values and mean ratios were observed in the visual, executive control, and sensorimotor networks for TBI piglets compared to controls. Significant differences were also observed within several specific individual anatomical structures within each network. In conclusion, both rs- and tb-fMRI demonstrate the ability to detect functional connectivity disruptions in a translational TBI piglet model, and these disruptions can be traced to specific affected anatomical structures.


Author(s):  
Yurui Gao ◽  
Muwei Li ◽  
Anna S Huang ◽  
Adam W Anderson ◽  
Zhaohua Ding ◽  
...  

BACKGROUND: Schizophrenia, characterized by cognitive impairments, arises from a disturbance of brain network. Pathological changes in white matter (WM) have been indicated as playing a role in disturbing neural connectivity in schizophrenia. However, deficits of functional connectivity (FC) in individual WM bundles in schizophrenia have never been explored; neither have cognitive correlates with those deficits. METHODS: Resting-state and spatial working memory task fMRI images were acquired on 67 healthy subjects and 84 patients with schizophrenia. The correlations in blood-oxygenation-level-dependent (BOLD) signals between 46 WM and 82 gray matter regions were quantified, analyzed and compared between groups under three scenarios (i.e., resting state, retention period and entire time of a spatial working memory task). Associations of FC in WM with cognitive assessment scores were evaluated for three scenarios. RESULTS: FC deficits were significant (p<.05) in external capsule, cingulum, uncinate fasciculus, genu and body of corpus callosum under all three scenarios. Deficits were also present in the anterior limb of the internal capsule and cerebral peduncle in task scenario. Decreased FCs in specific WM bundles associated significantly (p<.05) with cognitive impairments in working memory, processing speed and/or cognitive control. CONCLUSIONS: Decreases in FC are evident in several WM bundles in patients with schizophrenia and are significantly associated with cognitive impairments during both rest and working memory tasks. Furthermore, working memory tasks expose FC deficits in more WM bundles and more cognitive associates in schizophrenia than resting state does.


2018 ◽  
Author(s):  
Chadi Abdallah ◽  
Christopher Averill ◽  
Amy Ramage ◽  
Lynnette Averill ◽  
Selin Goktas ◽  
...  

BACKGROUND: Better understanding of the neurobiology of posttraumatic stress disorder (PTSD) may be critical to developing novel, effective therapeutics. Here, we conducted a data-driven investigation using a well-established, graph- based topological measure of nodal strength to determine the extent of functional dysconnectivity in a cohort of active duty US Army soldiers with PTSD compared to controls. METHODS: 102 participants with (n=50) or without PTSD (n=52) completed functional magnetic resonance imaging (fMRI) at rest and during symptom provocation using subject-specific script imagery. Vertex/voxel global brain connectivity with global signal regression (GBCr), a measure of nodal strength, was calculated as the average of its functional connectivity with all other vertices/voxels in the brain gray matter. RESULTS: In contrast to during resting-state, where there were no group differences, we found a significantly higher GBCr, in PTSD participants compared to controls, in areas within the right hemisphere, including anterior insula, caudal- ventrolateral prefrontal, and rostral-ventrolateral parietal cortices. Overall, these clusters overlapped with the ventral and dorsal salience networks. Post hoc analysis showed increased GBCr in these salience clusters during symptom provocation compared to resting-state. In addition, resting-state GBCr in the salience clusters predicted GBCr during symptom provocation in PTSD participants but not in controls. CONCLUSION: In PTSD, increased connectivity within the salience network has been previously hypothesized, based primarily on seed-based connectivity findings. The current results strongly support this hypothesis using whole-brain network measure in a fully data-driven approach. It remains to be seen in future studies whether these identified salience disturbances would normalize following treatment.


2019 ◽  
Author(s):  
Aya Kabbara ◽  
Veronique Paban ◽  
Arnaud Weill ◽  
Julien Modolo ◽  
Mahmoud Hassan

AbstractIntroductionIdentifying the neural substrates underlying the personality traits is a topic of great interest. On the other hand, it is now established that the brain is a dynamic networked system which can be studied using functional connectivity techniques. However, much of the current understanding of personality-related differences in functional connectivity has been obtained through the stationary analysis, which does not capture the complex dynamical properties of brain networks.ObjectiveIn this study, we aimed to evaluate the feasibility of using dynamic network measures to predict personality traits.MethodUsing the EEG/MEG source connectivity method combined with a sliding window approach, dynamic functional brain networks were reconstructed from two datasets: 1) Resting state EEG data acquired from 56 subjects. 2) Resting state MEG data provided from the Human Connectome Project. Then, several dynamic functional connectivity metrics were evaluated.ResultsSimilar observations were obtained by the two modalities (EEG and MEG) according to the neuroticism, which showed a negative correlation with the dynamic variability of resting state brain networks. In particular, a significant relationship between this personality trait and the dynamic variability of the temporal lobe regions was observed. Results also revealed that extraversion and openness are positively correlated with the dynamics of the brain networks.ConclusionThese findings highlight the importance of tracking the dynamics of functional brain networks to improve our understanding about the neural substrates of personality.


2020 ◽  
Author(s):  
Giovanni Rabuffo ◽  
Jan Fousek ◽  
Christophe Bernard ◽  
Viktor Jirsa

AbstractAt rest, mammalian brains display a rich complex spatiotemporal behavior, which is reminiscent of healthy brain function and has provided nuanced understandings of several major neurological conditions. Despite the increasingly detailed phenomenological documentation of the brain’s resting state, its principle underlying causes remain unknown. To establish causality, we link structurally defined features of a brain network model to neural activation patterns and their variability. For the mouse, we use a detailed connectome-based model and simulate the resting state dynamics for neural sources and whole brain imaging signals (Blood-Oxygen-Level-Dependent (BOLD), Electroencephalography (EEG)). Under conditions of near-criticality, characteristic neuronal cascades form spontaneously and propagate through the network. The largest neuronal cascades produce short-lived but robust co-fluctuations at pairs of regions across the brain. During these co-activation episodes, long-lasting functional networks emerge giving rise to epochs of stable resting state networks correlated in time. Sets of neural cascades are typical for a resting state network, but different across. We experimentally confirm the existence and stability of functional connectivity epochs comprising BOLD co-activation bursts in mice (N=19). We further demonstrate the leading role of the neuronal cascades in a simultaneous EEG/fMRI data set in humans (N=15), explaining a large part of the variability of functional connectivity dynamics. We conclude that short-lived neuronal cascades are a major robust dynamic component contributing to the organization of the slowly evolving spontaneous fluctuations in brain dynamics at rest.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Anna Lardone ◽  
Marianna Liparoti ◽  
Pierpaolo Sorrentino ◽  
Rosaria Rucco ◽  
Francesca Jacini ◽  
...  

It has been suggested that the practice of meditation is associated to neuroplasticity phenomena, reducing age-related brain degeneration and improving cognitive functions. Neuroimaging studies have shown that the brain connectivity changes in meditators. In the present work, we aim to describe the possible long-term effects of meditation on the brain networks. To this aim, we used magnetoencephalography to study functional resting-state brain networks in Vipassana meditators. We observed topological modifications in the brain network in meditators compared to controls. More specifically, in the theta band, the meditators showed statistically significant (p corrected = 0.009) higher degree (a centrality index that represents the number of connections incident upon a given node) in the right hippocampus as compared to controls. Taking into account the role of the hippocampus in memory processes, and in the pathophysiology of Alzheimer’s disease, meditation might have a potential role in a panel of preventive strategies.


Author(s):  
Uzma Nawaz ◽  
Ivy Lee ◽  
Adam Beermann ◽  
Shaun Eack ◽  
Matcheri Keshavan ◽  
...  

Abstract Resting-state fMRI (rsfMRI) demonstrates that the brain is organized into distributed networks. Numerous studies have examined links between psychiatric symptomatology and network functional connectivity. Traditional rsfMRI analyses assume that the spatial organization of networks is invariant between individuals. This dogma has recently been overturned by the demonstration that networks show significant variation between individuals. We tested the hypothesis that previously observed relationships between schizophrenia-negative symptom severity and network connectivity are actually due to individual differences in network spatial organization. Forty-four participants diagnosed with schizophrenia underwent rsfMRI scans and clinical assessments. A multivariate pattern analysis determined how whole-brain functional connectivity correlates with negative symptom severity at the individual voxel level. Brain connectivity to a region of the right dorsolateral prefrontal cortex correlates with negative symptom severity. This finding results from individual differences in the topographic distribution of 2 networks: the default mode network (DMN) and the task-positive network (TPN). Both networks demonstrate strong (r = ~0.49) and significant (P &lt; .001) relationships between topography and symptom severity. For individuals with low symptom severity, this critical region is part of the DMN. In highly symptomatic individuals, this region is part of the TPN. Previously overlooked individual variation in brain organization is tightly linked to differences in schizophrenia symptom severity. Recognizing critical links between network topography and pathological symptomology may identify key circuits that underlie cognitive and behavioral phenotypes. Individual variation in network topography likely guides different responses to clinical interventions that rely on anatomical targeting (eg, transcranial magnetic stimulation [TMS]).


SLEEP ◽  
2020 ◽  
Vol 43 (Supplement_1) ◽  
pp. A289-A289
Author(s):  
F Xiao ◽  
L Zhao ◽  
F Han

Abstract Introduction To evaluate resting state functional connectivity and topological properties of brain network in narcolepsy compared with healthy controls. Methods Resting state fMRI was performed in 26 adult narcolepsy patients and 30 matched healthy controls. MRI data was first analyzed by group independent component analysis, then a graph theoretical method was applied to evaluate topological properties within whole brain. Small-world network parameters and nodal topological properties were measured. Altered topological properties in brain areas between groups were selected as ROI-seeds, then functional connectivity among these ROI-seeds were compared between groups. Partial correlation analysis was performed to evaluate the relationship between sleepiness severity and functional connectivity or topological properties in the narcolepsy. Results 21 independent components out of 48 components were obtained. Compared with healthy controls, narcolepsy exhibited a significant decreased functional connectivity within the executive and salience network, while increased functional connectivity in bilateral frontal lobe within executive network can be detected in narcolepsy. There were no differences in small-world network properties between narcolepsy and healthy controls. The altered brain areas in nodal topological properties were mainly located in inferior frontal cortex, basal ganglia, anterior cingulate, sensory cortex, supplementary motor cortex and visual cortex between groups. In the partial correlation analysis, nodal topological properties in putamen, anterior cingulate and sensory cortex as well as functional connectivity between these brain regions were correlated with the severity of sleepiness (sleep latency, REM sleep latency and ESS) among narcolepsy. Conclusion Altered connectivity within executive network and salience network were found in narcolepsy. Functional connection changes between left frontal cortex and left caudate nucleus may be one of the parameters describing the severity of narcolepsy. Nodal topological properties alterations in left putamen and left posterior cingulate, changes in functional connectivity between left supplementary motor area and right occipital as well as changes in functional connectivity between left anterior cingulate gyrus and bilateral postcentral gyrus can be considered to be a specific indicator for evaluating the severity of narcolepsy. Support National Natural Science Foundation of China (81700088)National Program on Key Basic Research Project of China (973 Program, 2015CB856405)


Sign in / Sign up

Export Citation Format

Share Document