scholarly journals Measuring sleep regularity: Theoretical properties and practical usage of existing metrics

SLEEP ◽  
2021 ◽  
Author(s):  
Dorothee Fischer ◽  
Elizabeth B Klerman ◽  
Andrew J K Phillips

Abstract Study Objectives Sleep regularity predicts many health-related outcomes. Currently, however, there is no systematic approach to measuring sleep regularity. Traditionally, metrics have assessed deviations in sleep patterns from an individual’s average. Traditional metrics include intra-individual standard deviation (StDev), Interdaily Stability (IS), and Social Jet Lag (SJL). Two metrics were recently proposed that instead measure variability between consecutive days: Composite Phase Deviation (CPD) and Sleep Regularity Index (SRI). Using large-scale simulations, we investigated the theoretical properties of these five metrics. Methods Multiple sleep-wake patterns were systematically simulated, including variability in daily sleep timing and/or duration. Average estimates and 95% confidence intervals were calculated for six scenarios that affect measurement of sleep regularity: ‘scrambling’ the order of days; daily vs. weekly variation; naps; awakenings; ‘all-nighters’; and length of study. Results SJL measured weekly but not daily changes. Scrambling did not affect StDev or IS, but did affect CPD and SRI; these metrics, therefore, measure sleep regularity on multi-day and day-to-day timescales, respectively. StDev and CPD did not capture sleep fragmentation. IS and SRI behaved similarly in response to naps and awakenings but differed markedly for all-nighters. StDev and IS required over a week of sleep-wake data for unbiased estimates, whereas CPD and SRI required larger sample sizes to detect group differences. Conclusions Deciding which sleep regularity metric is most appropriate for a given study depends on a combination of the type of data gathered, the study length and sample size, and which aspects of sleep regularity are most pertinent to the research question.

Author(s):  
Jian Tao ◽  
Werner Benger ◽  
Kelin Hu ◽  
Edwin Mathews ◽  
Marcel Ritter ◽  
...  

Author(s):  
Osama Abdelkarim ◽  
Julian Fritsch ◽  
Darko Jekauc ◽  
Klaus Bös

Physical fitness is an indicator for children’s public health status. Therefore, the aim of this study was to examine the construct validity and the criterion-related validity of the German motor test (GMT) in Egyptian schoolchildren. A cross-sectional study was conducted with a total of 931 children aged 6 to 11 years (age: 9.1 ± 1.7 years) with 484 (52%) males and 447 (48%) females in grades one to five in Assiut city. The children’s physical fitness data were collected using GMT. GMT is designed to measure five health-related physical fitness components including speed, strength, coordination, endurance, and flexibility of children aged 6 to 18 years. The anthropometric data were collected based on three indicators: body height, body weight, and BMI. A confirmatory factor analysis was conducted with IBM SPSS AMOS 26.0 using full-information maximum likelihood. The results indicated an adequate fit (χ2 = 112.3, df = 20; p < 0.01; CFI = 0.956; RMSEA = 0.07). The χ2-statistic showed significant results, and the values for CFI and RMSEA showed a good fit. All loadings of the manifest variables on the first-order latent factors as well as loadings of the first-order latent factors on the second-order superordinate factor were significant. The results also showed strong construct validity in the components of conditioning abilities and moderate construct validity in the components of coordinative abilities. GMT proved to be a valid method and could be widely used on large-scale studies for health-related fitness monitoring in the Egyptian population.


Algorithms ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 154
Author(s):  
Marcus Walldén ◽  
Masao Okita ◽  
Fumihiko Ino ◽  
Dimitris Drikakis ◽  
Ioannis Kokkinakis

Increasing processing capabilities and input/output constraints of supercomputers have increased the use of co-processing approaches, i.e., visualizing and analyzing data sets of simulations on the fly. We present a method that evaluates the importance of different regions of simulation data and a data-driven approach that uses the proposed method to accelerate in-transit co-processing of large-scale simulations. We use the importance metrics to simultaneously employ multiple compression methods on different data regions to accelerate the in-transit co-processing. Our approach strives to adaptively compress data on the fly and uses load balancing to counteract memory imbalances. We demonstrate the method’s efficiency through a fluid mechanics application, a Richtmyer–Meshkov instability simulation, showing how to accelerate the in-transit co-processing of simulations. The results show that the proposed method expeditiously can identify regions of interest, even when using multiple metrics. Our approach achieved a speedup of 1.29× in a lossless scenario. The data decompression time was sped up by 2× compared to using a single compression method uniformly.


2019 ◽  
Vol 16 (1) ◽  
Author(s):  
Włodzisław Duch ◽  
Dariusz Mikołajewski

Abstract Despite great progress in understanding the functions and structures of the central nervous system (CNS) the brain stem remains one of the least understood systems. We know that the brain stem acts as a decision station preparing the organism to act in a specific way, but such functions are rather difficult to model with sufficient precision to replicate experimental data due to the scarcity of data and complexity of large-scale simulations of brain stem structures. The approach proposed in this article retains some ideas of previous models, and provides more precise computational realization that enables qualitative interpretation of the functions played by different network states. Simulations are aimed primarily at the investigation of general switching mechanisms which may be executed in brain stem neural networks, as far as studying how the aforementioned mechanisms depend on basic neural network features: basic ionic channels, accommodation, and the influence of noise.


Author(s):  
Eric Y. Hu ◽  
Jean-Marie C. Bouteiller ◽  
Dong Song ◽  
Michel Baudry ◽  
Theodore W. Berger

Sign in / Sign up

Export Citation Format

Share Document