scholarly journals Effect of Cross-Orientation Normalization on Different Neural Measures in Macaque Primary Visual Cortex

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Aritra Das ◽  
Supratim Ray

Abstract Divisive normalization is a canonical mechanism that can explain a variety of sensory phenomena. While normalization models have been used to explain spiking activity in response to different stimulus/behavioral conditions in multiple brain areas, it is unclear whether similar models can also explain modulation in population-level neural measures such as power at various frequencies in local field potentials (LFPs) or steady-state visually evoked potential (SSVEP) that is produced by flickering stimuli and popular in electroencephalogram studies. To address this, we manipulated normalization strength by presenting static as well as flickering orthogonal superimposed gratings (plaids) at varying contrasts to 2 female monkeys while recording multiunit activity (MUA) and LFP from the primary visual cortex and quantified the modulation in MUA, gamma (32–80 Hz), high-gamma (104–248 Hz) power, as well as SSVEP. Even under similar stimulus conditions, normalization strength was different for the 4 measures and increased as: spikes, high-gamma, SSVEP, and gamma. However, these results could be explained using a normalization model that was modified for population responses, by varying the tuned normalization parameter and semisaturation constant. Our results show that different neural measures can reflect the effect of stimulus normalization in different ways, which can be modeled by a simple normalization model.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bin Wang ◽  
Chuanliang Han ◽  
Tian Wang ◽  
Weifeng Dai ◽  
Yang Li ◽  
...  

AbstractStimulus-dependence of gamma oscillations (GAMMA, 30–90 Hz) has not been fully understood, but it is important for revealing neural mechanisms and functions of GAMMA. Here, we recorded spiking activity (MUA) and the local field potential (LFP), driven by a variety of plaids (generated by two superimposed gratings orthogonal to each other and with different contrast combinations), in the primary visual cortex of anesthetized cats. We found two distinct narrow-band GAMMAs in the LFPs and a variety of response patterns to plaids. Similar to MUA, most response patterns showed that the second grating suppressed GAMMAs driven by the first one. However, there is only a weak site-by-site correlation between cross-orientation interactions in GAMMAs and those in MUAs. We developed a normalization model that could unify the response patterns of both GAMMAs and MUAs. Interestingly, compared with MUAs, the GAMMAs demonstrated a wider range of model parameters and more diverse response patterns to plaids. Further analysis revealed that normalization parameters for high GAMMA, but not those for low GAMMA, were significantly correlated with the discrepancy of spatial frequency between stimulus and sites’ preferences. Consistent with these findings, normalization parameters and diversity of high GAMMA exhibited a clear transition trend and region difference between area 17 to 18. Our results show that GAMMAs are also regulated in the form of normalization, but that the neural mechanisms for these normalizations might differ from those of spiking activity. Normalizations in different brain signals could be due to interactions of excitation and inhibitions at multiple stages in the visual system.


2021 ◽  
Author(s):  
Jun Zhuang ◽  
Yun Wang ◽  
Naveen D Ouellette ◽  
Emily Turschak ◽  
Rylan Larsen ◽  
...  

The motion/direction-sensitive and location-sensitive neurons are two major functional types in mouse visual thalamus that project to the primary visual cortex (V1). It has been proposed that the motion/direction-sensitive neurons mainly target the superficial layers in V1, in contrast to the location-sensitive neurons which mainly target the middle layers. Here, by imaging calcium activities of motion/direction-sensitive and location-sensitive axons in V1, we find no evidence for these cell-type specific laminar biases at population level. Furthermore, using a novel approach to reconstruct single-axon structures with identified in vivo response types, we show that, at single-axon level, the motion/direction-sensitive axons have middle layer preferences and project more densely to the middle layers than the location-sensitive axons. Overall, our results demonstrate that Motion/direction-sensitive thalamic neurons project extensively to the middle layers of V1, challenging the current view of the thalamocortical organizations in the mouse visual system.


2019 ◽  
Vol 122 (4) ◽  
pp. 1634-1648 ◽  
Author(s):  
Benjamin Fischer ◽  
Andreas Schander ◽  
Andreas K. Kreiter ◽  
Walter Lang ◽  
Detlef Wegener

Recordings of epidural field potentials (EFPs) allow neuronal activity to be acquired over a large region of cortical tissue with minimal invasiveness. Because electrodes are placed on top of the dura and do not enter the neuronal tissue, EFPs offer intriguing options for both clinical and basic science research. On the other hand, EFPs represent the integrated activity of larger neuronal populations and possess a higher trial-by-trial variability and a reduced signal-to-noise ratio due the additional barrier of the dura. It is thus unclear whether and to what extent EFPs have sufficient spatial selectivity to allow for conclusions about the underlying functional cortical architecture, and whether single EFP trials provide enough information on the short timescales relevant for many clinical and basic neuroscience purposes. We used the high spatial resolution of primary visual cortex to address these issues and investigated the extent to which very short EFP traces allow reliable decoding of spatial information. We briefly presented different visual objects at one of nine closely adjacent locations and recorded neuronal activity with a high-density epidural multielectrode array in three macaque monkeys. With the use of receiver operating characteristics (ROC) to identify the most informative data, machine-learning algorithms provided close-to-perfect classification rates for all 27 stimulus conditions. A binary classifier applying a simple max function on ROC-selected data further showed that single trials might be classified with 100% performance even without advanced offline classifiers. Thus, although highly variable, EFPs constitute an extremely valuable source of information and offer new perspectives for minimally invasive recording of large-scale networks. NEW & NOTEWORTHY Epidural field potential (EFP) recordings provide a minimally invasive approach to investigate large-scale neural networks, but little is known about whether they possess the required specificity for basic and clinical neuroscience. By making use of the spatial selectivity of primary visual cortex, we show that single-trial information can be decoded with close-to-perfect performance, even without using advanced classifiers and based on very few data. This labels EFPs as a highly attractive and widely usable signal.


2005 ◽  
Vol 94 (1) ◽  
pp. 788-798 ◽  
Author(s):  
Valerio Mante ◽  
Matteo Carandini

A recent optical imaging study of primary visual cortex (V1) by Basole, White, and Fitzpatrick demonstrated that maps of preferred orientation depend on the choice of stimuli used to measure them. These authors measured population responses expressed as a function of the optimal orientation of long drifting bars. They then varied bar length, direction, and speed and found that stimuli of a same orientation can elicit different population responses and stimuli with different orientation can elicit similar population responses. We asked whether these results can be explained from known properties of V1 receptive fields. We implemented an “energy model” where a receptive field integrates stimulus energy over a region of three-dimensional frequency space. The population of receptive fields defines a volume of visibility, which covers all orientations and a plausible range of spatial and temporal frequencies. This energy model correctly predicts the population response to bars of different length, direction, and speed and explains the observations made with optical imaging. The model also readily explains a related phenomenon, the appearance of motion streaks for fast-moving dots. We conclude that the energy model can be applied to activation maps of V1 and predicts phenomena that may otherwise appear to be surprising. These results indicate that maps obtained with optical imaging reflect the layout of neurons selective for stimulus energy, not for isolated stimulus features such as orientation, direction, and speed.


2021 ◽  
Author(s):  
Nora Berz Slapø ◽  
Kjetil Jørgensen ◽  
Torbjørn Elvsåshagen ◽  
Stener Nerland ◽  
Daniel Roelfs ◽  
...  

Abstract Schizophrenia (SCZ) spectrum and bipolar disorder (BD) are severe mental disorders with unknown pathophysiology. Altered visual evoked potential (VEP), an electroencephalogram signal reflecting function in the primary visual cortex (V1), abnormal visual processing and visual hallucinations reported in these patients, all point towards V1 dysfunction. While the mechanisms contributing to V1 dysfunction remain unknown, structural alterations are possible candidates. Lack of insight into neural substrates of structure and functional in V1 has limited our ability to determine implications of altered V1 function. While combining VEP and magnetic resonance imaging has increased our understanding of the structure-function relationship in V1 in healthy individuals, no previous study has examined the same structure-function relationship in patients with SCZ spectrum and BD. Here, we aimed to confirm previous findings of a selective positive correlation between the amplitude of the P100 component of the VEP and V1 surface area (SA) in 307 healthy individuals and to examine whether this relationship was altered in patients with SCZ spectrum (n=30) and BD (n=45). The correlation between the P100 amplitude and the total, (r=0.16, p=0.006), right (r=0.14, p=0.013) and left V1 surface area (r=0.13, p=0.02) was significant in healthy individuals, but not in patients. The current results support previous findings of a selective relationship between P100 amplitude and V1 surface area in healthy individuals and suggests that other factors than V1 surface area or thickness explain V1 dysfunction reported in these patients.


2018 ◽  
Vol 120 (4) ◽  
pp. 1625-1639 ◽  
Author(s):  
Vanessa L. Mock ◽  
Kimberly L. Luke ◽  
Jacqueline R. Hembrook-Short ◽  
Farran Briggs

Correlations and inferred causal interactions among local field potentials (LFPs) simultaneously recorded in distinct visual brain areas can provide insight into how visual and cognitive signals are communicated between neuronal populations. Based on the known anatomical connectivity of hierarchically organized visual cortical areas and electrophysiological measurements of LFP interactions, a framework for interareal frequency-specific communication has emerged. Our goals were to test the predictions of this framework in the context of the early visual pathways and to understand how attention modulates communication between the visual thalamus and primary visual cortex. We recorded LFPs simultaneously in retinotopically aligned regions of the visual thalamus and primary visual cortex in alert and behaving macaque monkeys trained on a contrast-change detection task requiring covert shifts in visual spatial attention. Coherence and Granger-causal interactions among early visual circuits varied dynamically over different trial periods. Attention significantly enhanced alpha-, beta-, and gamma-frequency interactions, often in a manner consistent with the known anatomy of early visual circuits. However, attentional modulation of communication among early visual circuits was not consistent with a simple static framework in which distinct frequency bands convey directed inputs. Instead, neuronal network interactions in early visual circuits were flexible and dynamic, perhaps reflecting task-related shifts in attention. NEW & NOTEWORTHY Attention alters the way we perceive the visual world. For example, attention can modulate how visual information is communicated between the thalamus and cortex. We recorded local field potentials simultaneously in the visual thalamus and cortex to quantify the impact of attention on visual information communication. We found that attentional modulation of visual information communication was not static, but dynamic over the time course of trials.


2004 ◽  
Vol 556 (3) ◽  
pp. 971-982 ◽  
Author(s):  
Dirk Jancke ◽  
Wolfram Erlhagen ◽  
Gregor Schöner ◽  
Hubert R. Dinse

2013 ◽  
Vol 33 (22) ◽  
pp. 9273-9282 ◽  
Author(s):  
D. E. Anderson ◽  
E. F. Ester ◽  
J. T. Serences ◽  
E. Awh

Sign in / Sign up

Export Citation Format

Share Document