scholarly journals Uncovering the hidden facets of drought stress: secondary metabolites make the difference

2015 ◽  
pp. tpv128 ◽  
Author(s):  
Ülo Niinemets
2016 ◽  
Vol 4 (Special-Issue-October) ◽  
pp. 37-47
Author(s):  
Ana Barros ◽  
Vitoria Bell ◽  
Jorge Ferrão ◽  
Vittorio Calabrese ◽  
Tito Fernandes

Mushrooms have attracted market attention because they are a potential source of bioactive compounds able to perform several functions in organisms with benefits for the health of the consumer. Cultivation processes vary according a) industrial fermentation - in large vats to produce extracted form of mushrooms or b) closed cultivation system - individually grown in jars on an aseptic “substrate” with controlled lighting and irrigation to produce a biomass form of mushrooms. Biomass is the mycelium with primordia (young fruiting body - before the mushroom blooms) containing all the nutrients and active compounds, including β-glucans, enzymes and secondary metabolites. The classification of mushroom biomass varies according to the presentation; the biomass can be classified as a “food” if in powder form or, classified as a “dietary supplement” in tablet form. While tablet mushroom biomass is considered a dietary supplement, mushroom extracts are designated pharmaceutical compounds, pharmanutrients or nutraceuticals. Here we illustrate the difference between mushrooms in the biomass and extract forms, the similarities and differences on its content on enzymes, secondary metabolites and on β-glucans, as a soluble and fermentable fibre. Of particular note is the rich enzyme activity in the biomass form of mushrooms. Such activity includes enzymes that prevent oxidative stress (superoxide dismutase), enzymes that prevent cellular growth (protease, glucoamylase) and enzymes that promote detoxification (cytochrome P-450, peroxidase, glucose-2-oxidase). β-glucans have been proposed to act as “biological response modifiers” based on their effects on the immune system, and its role in the prevention and treatment of various metabolic syndrome-linked diseases. This review focuses also on some described health-promoting potential of mushroom biomass, all through immunomodulation. The role of intestinal microbiota is enhanced.


2020 ◽  
Author(s):  
Guori Gao ◽  
Zhongrui Lv ◽  
Guoyun Zhang ◽  
Jiayi Li ◽  
Jianguo Zhang ◽  
...  

Abstract Drought is the most severe abiotic stress and hinders the normal growth and development of plants. Sea buckthorn (Hippophae rhamnoides Linn.) is a typical drought-resistant tree species. In this study, the leaves of the H. rhamnoides ssp. sinensis (“FN”) and H. rhamnoides ssp. mongolica (“XY”) were selected during drought-recovery cycles for RNA sequencing, and physiological and biochemical analyses. The results revealed that drought stress significantly decreased leaf water potential, net photosynthetic rate, and stomatal conductance in both sea buckthorn subspecies. Similarly, the contents of flavone, flavonol, isoflavone and flavanone significantly decreased under drought stress in “XY.” Conversely, in “FN,” the flavone and abscisic acid (ABA) contents were significantly higher under drought stress and recovered after rehydration. Meanwhile, 4,618 and 6,100 differentially expressed genes (DEGs) were identified under drought stress in “FN” and “XY,” respectively. In total, 5,164 DEGs were observed in the comparison between “FN” and “XY” under drought stress. This was more than the 3,821 and 3,387 DEGs found when comparing the subspecies under control and rehydration conditions, respectively. These DEGs were mainly associated with carotenoid biosynthesis, flavonoid biosynthesis, photosynthesis, and plant hormone signal transduction. Six hub DEGs (ABCG5, ABCG22, ABCG32, ABCG36, ABF2 and PYL4) were identified to respond to drought stress based on WGCNA and BLAST analysis using DroughtDB. These six DEGs were annotated to play roles in the ABA-dependent signaling pathway. Sixteen RNA sequencing results involving eight genes and similar expression patterns (12/16) were validated using quantitative real-time PCR. The biochemical and molecular mechanisms underlying the regulation of drought responses by ABA and flavonoids in sea buckthorn were clarified. In this study, gene co-expression networks were constructed, and the results suggested that the mutual regulation of ABA and flavonoid signaling contributed to the difference in drought resistance between the different sea buckthorn subspecies.


2020 ◽  
Vol 10 (10) ◽  
pp. 3369
Author(s):  
Pasquale Crupi ◽  
Marika Santamaria ◽  
Fernando Vallejo ◽  
Francisco A. Tomás-Barberán ◽  
Gianvito Masi ◽  
...  

Carotenoids are important secondary metabolites in wine grapes and play a key role as potential precursors of aroma compounds (i.e., C13-norisoprenoids), which have a high sensorial impact in wines. There is scarce information about the influence of pre-harvest inactivated yeast treatment on the norisoprenoid aroma potential of grapes. Thus, this work aimed to study the effect of the foliar application of yeast extracts (YE) to Negro Amaro and Primitivo grapevines on the carotenoid content during grape ripening and the difference between the resulting véraison and maturity (ΔC). The results showed that β-carotene and (allE)-lutein were the most abundant carotenoids in all samples, ranging from 60% to 70% of total compounds. Their levels, as well as those of violaxanthin, (9′Z)-neoxanthin, and 5,6-epoxylutein, decreased during ripening. This was especially observed in treated grapes, with ΔC values from 2.6 to 4.2-fold higher than in untreated grapes. Besides this, a principal components analysis (PCA) demonstrated that lutein, β-carotene, and violaxanthin and (9′Z)-neoxanthin derivatives principally characterized Negro Amaro and Primitivo, respectively. Thereby, the YE treatment has proved to be effective in improving the C13-norisoprenoid aroma potentiality of Negro Amaro and Primitivo, which are fundamental cultivars in the context of Italian wine production.


2020 ◽  
Vol 259 ◽  
pp. 108795 ◽  
Author(s):  
Shanshan Gao ◽  
Yanlin Wang ◽  
Shuai Yu ◽  
Yanqing Huang ◽  
Huanchu Liu ◽  
...  

2019 ◽  
Vol 99 (12) ◽  
pp. 5533-5540 ◽  
Author(s):  
Alessandra Podda ◽  
Susanna Pollastri ◽  
Paola Bartolini ◽  
Claudia Pisuttu ◽  
Elisa Pellegrini ◽  
...  

Agriculture ◽  
2016 ◽  
Vol 6 (2) ◽  
pp. 23 ◽  
Author(s):  
Nguyen Quan ◽  
La Anh ◽  
Do Khang ◽  
Phung Tuyen ◽  
Nguyen Toan ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Bishnu Maya Bashyal ◽  
Pooja Parmar ◽  
Najam Waris Zaidi ◽  
Rashmi Aggarwal

Trichoderma biopriming enhances rice growth in drought-stressed soils by triggering various plant metabolic pathways related to antioxidative defense, secondary metabolites, and hormonal upregulation. In the present study, transcriptomic analysis of rice cultivar IR64 bioprimed with Trichoderma harzianum under drought stress was carried out in comparison with drought-stressed samples using next-generation sequencing techniques. Out of the 2,506 significant (p < 0.05) differentially expressed genes (DEGs), 337 (15%) were exclusively expressed in drought-stressed plants, 382 (15%) were expressed in T. harzianum-treated drought-stressed plants, and 1,787 (70%) were commonly expressed. Furthermore, comparative analysis of upregulated and downregulated genes under stressed conditions showed that 1,053 genes (42%) were upregulated and 733 genes (29%) were downregulated in T. harzianum-treated drought-stressed rice plants. The genes exclusively expressed in T. harzianum-treated drought-stressed plants were mostly photosynthetic and antioxidative such as plastocyanin, small chain of Rubisco, PSI subunit Q, PSII subunit PSBY, osmoproteins, proline-rich protein, aquaporins, stress-enhanced proteins, and chaperonins. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis states that the most enriched pathways were metabolic (38%) followed by pathways involved in the synthesis of secondary metabolites (25%), carbon metabolism (6%), phenyl propanoid (7%), and glutathione metabolism (3%). Some of the genes were selected for validation using real-time PCR which showed consistent expression as RNA-Seq data. Furthermore, to establish host–T. harzianum interaction, transcriptome analysis of Trichoderma was also carried out. The Gene Ontology (GO) analysis of T. harzianum transcriptome suggested that the annotated genes are functionally related to carbohydrate binding module, glycoside hydrolase, GMC oxidoreductase, and trehalase and were mainly upregulated, playing an important role in establishing the mycelia colonization of rice roots and its growth. Overall, it can be concluded that T. harzianum biopriming delays drought stress in rice cultivars by a multitude of molecular programming.


2015 ◽  
Vol 19 (1) ◽  
pp. 43 ◽  
Author(s):  
R. Refli ◽  
Sukarti Muljopawiro ◽  
Kumala Dewi ◽  
Diah Rachmawati

The objective of this study was to analysis the expression of antioxidant genes in response to droughtstress in Indonesian rice. The malondialdehyde (MDA) content and the expression of Cu-ZnSod1, cCu-ZnSod2,MnSod1, cApxa, cApxb, chl-sApx, Cat1, Cat2, Cat3, Gr1, Gr2, and Gr3 genes were assayed in the rice fl ag leaf ofCiherang and Situ Bagendit cultivars subjected to control, mild and severe drought during the grain fi llingphase. Increase in MDA content of Ciherang treated to mild and severe drought was almost two-fold andthree-fold respectively, while MDA content in Situ Bagendit subjected to mild and severe drought increasedapproximately one-fold and two-fold as compared to the control. The semi quantitative reverse transcriptionpolymerase chain reaction (sqRT-PCR) analysis showed that the expression of cCu-ZnSod1, MnSod1, Cat2, Gr3genes of Ciherang, and cCu-ZnSod2, MnSod1, cApxa, cApxb, chl-sAPX, Cat2 and Gr1 genes of Situ Bagendit increasedin fl ag leaf of plant treated to drought. Expressions of cApxb, chl-sApx, Cat3 of Ciherang and Cu-ZnSod1 and Gr2genes of Situ Bagendit were not changed signifi cantly by drought stress. Decreased expression was shownby cCu-ZnSod2, cApxa, Cat1, Gr1 and Gr2 genes of Ciherang, and Cat1, Cat3 and Gr3 genes of Situ Bagendit. Theresults indicated that the activity of oxidative defense was regulated by four genes; cCu-ZnSod1, MnSod1, Cat2,Gr3 in Ciherang, and eight genes; cCu-ZnSod1, cCu-ZnSod2, MnSod1, cApxa, cApxb, chl-sApx, Cat2 and Gr1 in SituBagendit. Therefore, differences in the number of antioxidant genes controlling oxidative defense systemmight determine the difference of the oxidative defense capacity between both cultivars in response to droughtstress during grain fi lling.


Agronomy ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 137 ◽  
Author(s):  
Yanlin Wang ◽  
Shanshan Gao ◽  
Xingyuan He ◽  
Yan Li ◽  
Peiyang Li ◽  
...  

The drought resistance mechanism of Matteuccia struthiopteris (L.) Todar. and Athyrium multidentatum (Doll.) Ching were measured under natural drought exposure. The results showed that the two edible fern species showed stronger resistance in the early stages of drought, mainly expressed as the decrease of relative leaf water content (RLWC), increase of osmotic substances, secondary metabolites such as flavonoids (FC), total phenols (TPC), proantho cyanidins (PCC) content and enzyme activity (superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX)). The higher RLWC, FC, TPC, PCC and abscisic acid (ABA) content and lower H2O2 content indicates the stronger non-enzymatic antioxidant system and drought resistance of A. multidentatum. However, the proline (Pro) content changed slowly, and the synthesis of soluble protein (SP), total phenols, proantho cyanidins and ABA, SOD activity of two fern species were inhibited in the late stages of drought stress. This study can provide a scientific basis for the cultivation and utilization of edible fern species under forest in Northeast China.


Sign in / Sign up

Export Citation Format

Share Document