Rainfed Cotton Production on the Texas High Plains: Opportunities for Sustainable Production

2019 ◽  
Vol 111 (5) ◽  
pp. 2218-2225 ◽  
Author(s):  
J.A. Burke ◽  
K.L. Lewis ◽  
G.L. Ritchie ◽  
J. Moore‐Kucera ◽  
P.B. DeLaune ◽  
...  

2019 ◽  
Vol 51 (3) ◽  
pp. 385-401 ◽  
Author(s):  
Chandra Dhakal ◽  
Kelly Lange ◽  
Megha N. Parajulee ◽  
Eduardo Segarra

AbstractThis study utilizes a dynamic programming decision model, considering an intertemporal nitrogen carryover function, combined with both linear stochastic and deterministic plateau response functions to evaluate optimal nitrogen fertilizer decision rules and net present values (NPVs) in Texas High Plains cotton production. Nitrogen recommendations and NPVs are influenced by response function choice and nitrogen-to-cotton price ratios. Results indicate the stochastic plateau function better describes the data; the optimum nitrogen recommendation is to apply approximately 40 lb. of nitrogen for each bale of cotton production when considering nitrogen carryover information.


2002 ◽  
Vol 34 (3) ◽  
pp. 561-583 ◽  
Author(s):  
Megan L. Britt ◽  
Octavio A. Ramirez ◽  
Carlos E. Carpio

Production function models for cotton lint yields, seed yields, turnout, and lint quality characteristics are developed for the Texas High Plains. They are used to evaluate the impacts of quality considerations and of climate/weather information on the management decisions and on the profitability and risk of irrigated cotton production systems. It is concluded that both quality considerations and improved climatic/weather information could have substantial effects on expected profitability and risk. These effects mainly occur because of changes in optimal variety selection and irrigation water use levels. Quality considerations in particular result in significantly lower irrigation water use levels regardless of the climate/weather information assumption, which has important scarce-resource use implications for the Texas High Plains.


1985 ◽  
Vol 17 (2) ◽  
pp. 117-126 ◽  
Author(s):  
Sharif M. Masud ◽  
Ronald D. Lacewell ◽  
John R. Stoll ◽  
J. Knox Walker ◽  
James F. Leser ◽  
...  

AbstractThis study evaluated implications of increased bollworm problems in a 20-county area of the Texas High Plains relative to cotton yields and economic impact. Results did not indicate a serious effect of bollworms upon lint yield when insecticides were used for control. However, estimated annual reduction in farmer profit due to the bollworm for 1979-81 was over $30 million. Yields were estimated to decline about 300,000 bales without insecticide use and about 30,000 bales with insecticide use. This decline suggests potentially serious implications for the comparative economic position of cotton in this region if insecticide resistance were to develop among insect pests.


Plant Disease ◽  
2007 ◽  
Vol 91 (8) ◽  
pp. 1053-1053 ◽  
Author(s):  
B. D. Bruton ◽  
W. W. Fish ◽  
K. V. Subbarao ◽  
T. Isakeit

Verticillium dahliae (Kleb.) is known worldwide as a destructive soilborne pathogen with a wide host range (2). Reports of V. dahliae attacking cucurbits are generally limited to ‘Casaba’ and ‘Persian’ type melons. During August and September of 2004 to 2006, fields of seedless watermelon (Citrullus lanatus [Thunb.] Matsum. & Nak.) and pollinators in Yoakum County, Texas, exhibited severe symptoms of vine decline. There was no apparent difference between diploid and triploid watermelon cultivars. Night-time temperatures during July, August, and September averaged 20°C or less. Losses were estimated in excess of one-half million dollars. Symptoms consisted of leaf yellowing, wilting, and gradual death of the leaves, but stems generally remained green. The xylem exhibited a uniform tan-to-light brown discoloration that often extended throughout the vine. Dead plants had numerous microsclerotia embedded throughout the root and crown. Crown and root sections (1 cm long) from triploid plants were surface disinfected in 0.5% NaOCl for 30 s, transferred to water agar with 100 ppm of streptomycin sulfate, and incubated at 25°C. Slow-growing colonies were transferred to potato dextrose agar after approximately 72 h. V. dahliae was identified on the basis of morphology (3). Pathogenicity of four selected isolates was determined on the watermelon cultivars used to identify races of Fusarium oxysporum f. sp. niveum (Fon). Flasks containing 100 ml of medium (1) were inoculated with a 1-ml spore suspension at 1 × 105 spores/ml for each isolate and placed on an orbital shaker for 6 days at 100 rpm with continuous near-UV/fluorescent lighting at 25°C. Roots of approximately 40 plants of each of five watermelon cultivars (1 to 2 true-leaf stage) were trimmed to 2 cm long and root dipped for 2 min in the spore suspension (1 × 106/ml) of each isolate. Each cultivar/isolate combination and controls were transplanted into 10 pots (1.5 liter) with four plants per pot. The pots were transferred to the greenhouse where soil temperatures ranged between 15 and 25°C and were fertilized (Jack's fertilizer solution) every 7 days. Plants were rated at the end of 28 days as 1 = healthy, 2 = stunting (≤50% of controls), 3 = wilting, and 4 = dead. Initial wilting was observed within 7 to 10 days postinoculation. All four isolates caused varying degrees of vascular discoloration, stunting, wilting, and plant death. The pathogen was reisolated from symptomatic plants but not the controls. Mean disease ratings for the most virulent Texas isolate (28-040215) on ‘Black Diamond’, ‘Charleston Gray’, ‘Dixie Lee’, ‘Calhoun Gray’, and ‘PI 296341 FR’ were 2.7, 3.0, 3.0, 2.9, and 2.9, respectively. All watermelon Fon differentials were equally susceptible to V. dahliae in these studies. Historically, Verticillium wilt has been a problem in this area, which has been in cotton production for approximately 100 years. In the past decade, watermelon production has increased substantially to approximately 3,600 ha in the Texas High Plains. To our knowledge, this is the first known report of Verticillium wilt on watermelon in Texas. References: (1) R. G. Esposito and A. M. Fletcher. Arch. Biochem. Biophys. 93:369, 1961. (2) G. F. Pegg and B. L. Brady. Verticillium Wilts. CABI Publishing, New York, 2002. (3) H. C. Smith. N. Z. J. Agr. Res. 8:450, 1965.


Sign in / Sign up

Export Citation Format

Share Document