scholarly journals First report of sweet potato chlorotic stunt virus infecting sweet potatoes in Hungary

Plant Disease ◽  
2021 ◽  
Author(s):  
Francis Wanjohi Kiemo ◽  
Zoltán Tóth ◽  
Pál Salamon ◽  
Zoltán Szabó

Sweet potato chlorotic stunt virus (SPCSV), a crinivirus in the family Closteroviridae, is a quarantine pest in Europe and one of the most economically important viruses of sweet potato (Ipomoea batatas (L.) Lam) crops globally. It forms synergies with other viruses in sweet potato, leading to yield loss of 30-100% (Qin et al., 2014). In summer 2020, 62 symptomatic and 38 symptomless sweet potato vines were randomly collected in farmers’ fields in the south (Ásotthalom, Szeged) and central (Galgahévíz) parts of Hungary and transplanted in an insect-proof greenhouse. Six of the plants expressed SPCSV-like symptoms, including stunting, vein clearing and leaf purpling (Suppl1). To check for common viruses of sweet potato (Suppl2), total RNA and DNA were extracted from leaves of each of the 100 plants using Trizolate reagent (UD-GenoMed, Debrecen, Hungary) and Zenogene kit (Zenon Bio, Szeged, Hungary), respectively. Primer pair Ch2N (Suppl2) was designed using Primer3 (v. 0.4.0) to amplify a 194 bp fragment of SPCSV RNA1. Presence of the RNA viruses was checked by qPCR using qPCRBIO SyGreen 1-step qPCR kit (PCR Biosystems, London, UK), while DNA viruses were checked by PCR using DreamTaq DNA Polymerase (Thermo Scientific, Vilnius, Lithuania), followed by 1% agarose gel electrophoresis. Four samples (labelled A5.1, A6.1, A6V9-1, A6V9-2) out of the 100 tested positive for SPCSV. Two of them (A6V9-1 and A6V9-2) were co-infected with SPCSV, a badnavirus sweet potato pakakuy virus (SPPV) and a potyvirus sweet potato virus 2 (SPV2), while the other two (A5.1 and A6.1) lacked SPV2. Plants infected with SPCSV, SPV2 and SPPV displayed more severe symptoms. To confirm the results, cDNA synthesized from the four SPCSV positive samples using RevertAid first strand cDNA synthesis kit (Thermo Scientific, Vilnius, Lithuania) underwent PCR (94oC 4 min, 94oC 1 min, 53oC 30 s, 72oC 70 s and 72oC 10 min for a total of 30 cycles) using primers CL43U and CL43L for the viral heat shock protein 70 gene (Maliogka et al., 2020). An expected band size of 486 bp was obtained in all cases. The amplicon from sample A6.1 was sequenced and found to be identical to SPCSV Guatemalan isolate GT:B3:08 (acc. JF699628). RNA1 and RNA2 complete sequences from sample A6.1 were obtained via PCR amplifications of cDNA using primers (Suppl2) designed (from acc. KC888966 for RNA1 and acc. KC888963 for RNA2) to amplify overlapping fragments of West African strain of SPCSV. QIAquick gel extraction kit (QIAGEN, Hilden, Germany) was used to purify the PCR fragments, which were then cloned into pGEM-T Easy Vector (Promega, Madison, USA) and sequenced using Sanger sequencing technique (Biomi, Gödöllő, Hungary). BLASTn search revealed that RNA1 of our isolate Hun_01 (acc. MW892835) had 99.63% sequence identity to SPCSV isolate su-17-10 (acc. MK802073), while RNA2 of Hun_01 (acc. MW892836) was 99.68% similar to SPCSV isolate min-17-1 (acc. MK802078) and isolate 24-1 (acc. MK802080). Phylogenetic analysis using MegAlign (v. 7.1.0, 44.1) showed a close relationship between our isolate and those isolated in China, suggesting that they may have a common origin (Suppl1). Severe stunting and leaf yellowing symptoms developed in I. setosa indicator plants grafted with SPCSV infected sweet potato scions. qPCR test for the virus confirmed its presence in the I. setosa leaves. To the best of our knowledge, this is the first report on the occurrence of SPCSV in Hungary and the third in Europe (Valverde et al. 2004; EPPO 2021).

2021 ◽  
Vol 53 (1) ◽  
pp. 283-287
Author(s):  
Julia A. Martino ◽  
Liliana del Valle Di Feo ◽  
Mauro Paccioretti ◽  
Clara Adriana Contardi ◽  
Miguel A. Sanchez ◽  
...  

Symptomatic sweet potato cv Arapey INIA samples were collected from a commercial production field in Colonia Molina, Guaymallén department, Mendoza province, Argentina. They showed dark rounded lesions, sometimes coalescing with white granular mycelium. Fungus was obtained from symptomatic sweet potatoes, which represented the generalized infection that affected the crop. They were seeded in PDA with streptomycin sulfate and incubated for seven days at 21°C, alternating white/black (UV400nm) light. Observations with an optical microscope revealed the presence of hyaline, not septated, cylindrical endoconidia with rounded ends. They were 8-16 μm length and 4–6 μm width. Phialides were 43-46 μm length, rounded bases (7-9 μm width) and tapering to the neck´s tip (4-6 μm width). Brown chlamydospores (aleuriospores), 9-13 μm length and 8-12 μm width, in chains of 2-8 spores were observed. For molecular identification, total genomic DNA was extracted. ITS fragment of 565 pb was amplified using ITS5/ITS4 primers and sequenced. The sequence indicated 99% identity with Berkeleyomyces basicola (synonymous: Thielaviopsis basicola). This was deposited in GenBank as (KX580957) (CBS: C430.74, Gen Bank accession number AF275482.1). This is the first report of B. basicola in sweet potato in Argentina, a potential threat to storage root yields. Highlights: Sweet potato black root rot, new disease in Argentina. First report of Berkeleyomyces basicola  causing black root rot on sweet potato in Mendoza, Argentina.


Plant Disease ◽  
2014 ◽  
Vol 98 (8) ◽  
pp. 1163-1163
Author(s):  
E.-J. Kil ◽  
J. Kim ◽  
H.-S. Byun ◽  
H.-R. Kwak ◽  
M.-K. Kim ◽  
...  

Sweet potato (Ipomoea batatas) is one of the most important crops in eastern Asia, including Korea. Consumption of sweet potato is increasing gradually because of its growing reputation as a health food. Recently, outbreaks of viruses infecting sweet potatoes have increased all over the world, probably because sweet potatoes are produced via vegetative propagation (1,2). In Korea, most sweet potatoes in fields have been infected by a begomovirus, Sweet potato leaf curl virus (SPLCV), and other viruses such as Sweet potato feathery mottle virus, Sweet potato virus G, and Sweet potato latent virus (3). Many countries have monitored sweet potato virus infections in fields as well as in germplasm collections to select virus-free stocks. In 2013, 20 sweet potato plants showing leaf roll symptoms in Muan, South Korea, were collected and analyzed. Total DNA was isolated from sweet potato leaves (Viral Gene-spin Viral DNA/RNA Extraction Kit, iNtRON Biotechnology, Seongnam, Korea) and viral DNA was amplified by rolling circle amplification (RCA, TempliPhi Amplification Kit, GE Healthcare Life Sciences, Uppsala, Sweden) following the manufacturer's instructions. Amplicons were digested by restriction enzyme SacI (TaKaRa Bio, Shiga, Japan) and products were run on a 1.5% agarose gel. A 2.8-kb DNA fragment was purified from a gel, ligated into a pGEM-T easy vector (Promega, Madison, WI), and sequenced (Macrogen, Seoul, Korea). Based on a BLAST search, most of the sequences (36/38) were identified as SPLCV, but two independent clones 2,824 nt in length from sweet potato cv. Sincheonmi were similar to Sweet potato golden vein associated virus (SPGVaV) isolate US:MS:1B-3 (94.38%, GenBank Accession No. HQ333143). The complete genome sequence of the SPGVaV-Korea isolate contained six ORFs, as expected for a typical monopartite begomovirus. The sequence was deposited in GenBank under accession number KF803170. SPGVaV is a whitefly (Bemisia tabaci)-transmitted virus (genus Begomovirus, family Geminiviridae). A phylogenetic analysis that included other begomoviruses that infect sweet potato showed SPGVaV-Korea to segregate with other SPGVaV isolates. SPGVaV has previously only been reported in Brazil and the United States (1). This is the first report of SPGVaV in sweet potato outside of the Americas. References: (1) L. C. Albuquerque et al. Virol. J. 9:241, 2012. (2) E. Choi et al. Acta Virol. 56:187, 2012. (3) H. R. Kwak et al. Plant Pathol. J. 22:239, 2006.


Plant Disease ◽  
2013 ◽  
Vol 97 (9) ◽  
pp. 1260-1260 ◽  
Author(s):  
L.-Y. Wang ◽  
Y.-H. Cheng ◽  
N.-Y. Wang ◽  
K.-C. Chen ◽  
S.-D. Yeh

Sweet potato, Ipomoea batatas (L.) Lam., is an important root crop grown mainly in the counties of Changhua, Yunlin, Tainan, and Pingtung in Taiwan where Sweet potato feathery mottle virus (SPFMV) and Sweet potato latent virus (SPLV) have been reported. Commercial sweet potato grown in Nantou in 2009 and in Hualian in 2010 exhibited downward leaf curling and vein clearing, indicative of viral infection, yet symptoms were distinct from those caused by SPFMV, SPLV, or mixed infection of both viruses. Total RNA was extracted from two symptomatic plants from each county with RNeasy Plant Mini Kit (Qiagen, Hilden, Germany) and analyzed by reverse transcription (RT)-PCR using the potyvirusdegenerate primer Hrp5 (1) and oligo-dT18 with BamHI site at the 5′ end (5′-GGATCCTTTTTTTTTTTTTTTTTT-3′). Two healthy plants served as negative controls. An approximately 1.5-kb amplicon covering the region from the 3′-end of the nuclear inclusion protein b (NIb) gene to the 3′-untranslated region (3′-UTR) was amplified from all symptomatic plants, while the healthy controls remained negative. Subsequently, one sample from each location was cloned and sequenced (GenBank Accession No. HQ171932-TW1 [Nantou] and JN205346-TW2 [Hualian]). Based on sequence comparison, the two isolates shared only 86.7% nucleotide identity. BLAST analysis of the CP gene of the isolate TW1 revealed 99% nucleotide identity with the corresponding sequence of Sweet potato virus G (SPVG)-CH2 from China (Z83314). Isolate TW2, however, only shared 86% nucleotide identity with SPVG-CH2, indicating isolate TW2 is genetically different from other isolates and probably represents a new strain of SPVG. The presence of SPVG was further confirmed in symptomatic plants by indirect ELISA using SPVG antiserum developed by Y.-H. Cheng of the Agricultural Research Institute. Since co-infection of different viruses in sweet potato can cause severe leaf symptoms and significant yield reduction (3), a preliminary field survey was also conducted to determine the extent of co-infection with more than one potyvirus using three different primer pairs, SPVGup (5′-ACCGAGCTTTACCCCAGGTAGAGAG-3′)/SPVdw (5′-CGCGCAAGACTCATRTCAGTCAAAT-3′) for SPVG, FM16 (5′-GAATTTAAAGATGCAGGTGTGAAC-3′)/FM895 (5′-GAGGTTATGTATATTTCTAGTAAC-3′) for SPFMV, and L166 (5′-GACAGAGATATCAACACTGGCACC-3′)/L841 (5′-TCCAAGTAGTGTGTGTATGTTCCG-3′) for SPLV. Forty-six of 128 (36%) sweet potato samples collected from Nantou, Hualian, Yunlin, Tainan, and Chiayi counties during 2010 and 2011 tested positive for SPVG. Of the 46 samples that tested positive for SPVG, six were co-infected with SPLV, 19 were co-infected with SPFMV, and two were co-infected with all three viruses. Of the samples that tested negative for SPVG, 10 were infected with SPLV, eight were infected with SPFMV, and two were infected with both SPLV and SPFMV. To date, SPVG has been detected in China, the United States, Peru, Egypt, Ethiopia, Zimbabwe, South Africa, Spain, Java, New Zealand, Hawaii, French Polynesia, and Easter Island (2). To our knowledge, this is the first report of SPVG infecting sweet potato in Taiwan. SPVG could become a new and potentially serious threat to sweet potato production in Taiwan. References: (1) C. C. Chen et al. Bot. Stud. 47:369, 2006. (2) M. Rännäli et al. Plant Dis. 92:1313, 2008. (3) M. Untiveros et al. Plant Dis. 91:669, 2007.


Agrotek ◽  
2018 ◽  
Vol 3 (2) ◽  
Author(s):  
Andrew B. Pattikawa ◽  
Antonius Suparno ◽  
Saraswati Prabawardani

<em>Sweet potato is an important staple food crop especially for the local people of Central Highlands Jayawijaya. There are many accessions that have always been maintained its existence to enrich their various uses. Traditionally, sweet potato accessions were grouped based on the utilization, such as for animal feed, cultural ceremonies, consumption for adults, as well as for infants and children. This study was aimed to analyze the nutritional value of sweet potatoes consumed by infants and children of the Dani tribe. Chemical analyses were conducted at the Laboratory of Post-Harvest Research and Development Center, Cimanggu, Bogor. The results showed that each of 4 (four) sweet potato accessions which were consumed by infants and children had good nutrient levels. Accession Sabe showed the highest water content (72.56%), vitamin C (72.71 mg/100 g), Fe (11.85 mg/100 g), and K levels (130.41 mg / 100 grams). The highest levels of protein (1.44%), fat (1.00%), energy (154.43 kkal/100 gram), carbohydrate (35.47%), starch (30.26%), reducing sugar (3.44%), riboflavin (0.18 mg/100 g), and vitamin A (574.40 grams IU/100 were produced by accession Manis. On the other hand, accession Saborok produced the highest value for ash content (1.32%), vitamin E (28.30 mg/100 g), and ?-carotene (64.69 ppm). The highest level of crude fiber (1.81 %) and thiamin (0.36 mg/100 g) was produced by accession Yuaiken.</em>


Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2602
Author(s):  
Yu-Jung Tsai ◽  
Li-Yun Lin ◽  
Kai-Min Yang ◽  
Yi-Chan Chiang ◽  
Min-Hung Chen ◽  
...  

Roasting can increase the Maillard reaction and caramelization of sweet potatoes to create an attractive appearance, color, aroma, and taste, and is rapidly increasing in the commercial market. This study mainly analyzed the influence of roasting sweet potatoes, with and without the peel, on sweet potato quality and flavor characteristics combined with sensory qualities. The results showed that the a* value (1.65–8.10), browning degree (58.30–108.91), total acidity (0.14–0.21 g/100 g, DW), and maltose content (0.00–46.16 g/100 g, DW) of roasted sweet potatoes increased with roasting time. A total of 46 volatile compounds were detected and 2-furanmethanol, furfural, and maltol were identified as the main sources of the aroma of roasted sweet potatoes. A sensory evaluation based on a comprehensive nine-point acceptance test and descriptive analysis showed that roasting for 1 to 2 h resulted in the highest acceptance score (6.20–6.65), including a golden-yellow color, sweet taste, and fibrous texture. The sweet potatoes became brown after roasting for 2.5 to 3 h and gained a burnt and sour taste, which reduced the acceptance score (4.65–5.75). These results can provide a reference for increased quality in the food industry production of roasted sweet potatoes.


Plant Disease ◽  
2021 ◽  
Author(s):  
Jiahao Lai ◽  
Tongke Liu ◽  
Bing Liu ◽  
Weigang Kuang ◽  
Shuilin Song

Sweet potato [Ipomoea batatas (L.) Lam], is an extremely versatile vegetable that possesses high nutritional values. It is also a valuable medicinal plant having anti-cancer, antidiabetic, and anti-inflammatory activities. In July 2020, leaf spot was observed on leaves of sweet potato in Nanchang, China (28°45'51"N, 115°50'52"E), which affected the growth and development of the crop and caused tuberous roots yield losses of 25%. The disease incidence (total number of diseased plants / total number of surveyed plants × 100%) was 57% from a sampled population of 100 plants in the field. Symptomatic plants initially exhibited small, light brown, irregular-shaped spots on the leaves, subsequently coalescing to form large irregular brown lesions and some lesions finally fell off. Fifteen small pieces (each 5 mm2) of symptomatic leaves were excised from the junction of diseased and healthy tissue, surface sterilized in 75% ethanol solution for 30 sec and 0.1% mercuric chloride solution for 2 min, rinsed three times with sterile distilled water and incubated on potato dextrose agar (PDA) plates at 28°C in darkness. A total of seven fungal isolates with similar morphological characteristics were obtained as pure cultures by single-spore isolation. After 5 days of cultivation at 28°C, dark brown or blackish green colonies were observed, which developed brown, thick-walled, simple, or branched, and septate conidiophores. Conidia were 18.28 to 24.91 × 7.46 to 11.69 µm (average 21.27 × 9.48 µm, n = 100) in size, straight or slightly curved, middle cell unequally enlarged, brown to dark brown, apical, and basal cells slightly paler than the middle cells, with three septa. Based on morphological characteristics, the fungal isolates were suspected to be Curvularia plantarum (Raza et al. 2019). To further confirm the identification, three isolates (LGZ1, LGZ4 and LGZ5) were selected for molecular identification. The internal transcribed spacer region (ITS), glyceraldehyde-3-phosphate-dehydrogenase (GAPDH), and translation elongation factor 1-alpha (EF1-α) genes were amplified and sequenced using primers ITS1/ITS4 (Peever et al. 2004), gpd1/gpd2 (Berbee et al. 1999), EF-983F/EF-2218R (Rehner and Buckley 2005), respectively. The sequences of ITS region of the three isolates (accession nos. MW581905, MZ209268, and MZ227555) shared 100% identity with those of C. plantarum (accession nos. MT410571-72, MN044754-55). Their GAPDH gene sequences were identical (accession nos. MZ224017-19) and shared 100% identity with C. plantarum (accession nos. MN264120, MT432926, and MN053037-38). Similarly, EF1-α gene sequences were identical (accession nos. MZ224020-22) and had 100% identity with C. plantarum (accession nos. MT628901, MN263982-83). A maximum likelihood phylogenetic tree was built based on concatenated data from the sequences of ITS, GAPDH, and EF-1α by using MEGA 5. The three isolates LGZ1, LGZ4, and LGZ5 clustered with C. plantarum. The fungus was identified as C. plantarum by combining morphological and molecular characteristics. Pathogenicity tests were conducted by inoculating a conidial suspension (106 conidia/ml) on three healthy potted I. batatas plants (five leaves wounded with sterile needle of each potted plant were inoculated). In addition, fifteen wounded leaves of three potted plants were sprayed with sterile distilled water as a control. All plants were maintained in a climate box (12 h light/dark) at 25°C with 80% relative humidity. All the inoculated leaves started showing light brown flecks after 7 days, whereas the control leaves showed no symptoms. The pathogenicity test was conducted three times. The fungus was reisolated from all infected leaves of potted plants and confirmed as C. plantarum by morphological and molecular identification, fulfilling Koch’s postulates. To our knowledge, this is the first report of C. plantarum causing leaf spot on sweet potato in China. The discovery of this new disease and the identification of the pathogen will contribute to the disease management, provide useful information for reducing economic losses caused by C. plantarum, and lay a foundation for the further research of resistance breeding.


2021 ◽  
Vol 2 (7) ◽  
pp. 01-11
Author(s):  
Robert Germain Beka ◽  
Emmanuel Akdowa Panyoo ◽  
Germaine Yadang ◽  
Pamela Homsi ◽  
Laurette Blandine Mezajoug Kenfack ◽  
...  

The aim of the work was to produce and characterize the exopolysaccharides from loss cooked sweet potato (Ipomoea batatas) using fermentation with Lactobacillus. The cooked sweet potato was fermented according to the factorial design with the following factors: the time (21.51h-38.48h) and the amount of Lactobacillus (1.58*106-5*106UFC). Responses were represented by production yield, pH, and titrable acidity. Characterization of the exopolysaccharides was then done by determination of total sugars, solubility index and viscosity. The results show that the pH of unfermented cooked potatoes was between 6.23 to 6.63. The pH of fermented potatoes varies from 3.96 to 4.06. The lactic acid content was found from 7.75 to 9.9% for the fermented samples. The production yields are 1.90% for the samples fermented for 21.5 hours with 3.5*106UFC of bacteria and 5.62% for those fermented for 30 hours with the same volume of inoculum. The average viscosity of the products was 4mPas regardless of the fermentation time. Chemical characterization indicates glucose contents of 68.21 and 94.01% in fermented potato for 24h and 21h respectively. The solubility index gives values of 70.3 ± 0.16 and 88.11 ± 0.23 for fermentation times of 21h and 24h respectively. Results of this work indicated that cooked sweet potatoes ferment for 21h was a promising substrate for production of exopolysaccharides.


Author(s):  
Wa Ode Nurullah Leesi ◽  
Harapin Hafid ◽  
Muhammad Amrullah Pagala

This study aims to examine the use of red sweet potato flour on slaughter weight, percentage ofcarcass weight, and abdominal fat in broiler chickens fed with additional red sweet potato flour. Thisresearch was conducted in April to May 2018, housed in the Raman Farm enclosure in Puosu JayaVillage, Konda District, Konawe Selatan District. The material used in this study was 64 weeks oldbroiler chickens, with 64 feed ingredients used as the concentrate, corn, bean, sweet potato flour. Theequipment used is a scale, a colony cage made of wire-lined wood and measuring 4m x 2m, which isdivided into 16 plots and the size of each 1m x 0.5m, each story is equipped with a place to eat anddrink, 40-watt incandescent balloons and other equipment such as scales, ovens, sample grinders,basins, plastics, and gutters. This study was designed using a complete randomized design with fourtreatments and four replications, where four treatments consisted of P0 basic ration (Control), P1:basic ration containing 4% red sweet potato flour, P2: elemental percentage containing 6% red sweetpotato flour, and P3: basic ration contains 8% red sweet potato flour. The variables observed in thisstudy were cutting weight, carcass percentage, and abdominal fat of broiler chickens. The results ofthe analysis of variance showed that the administration of red sweet potato flour had no significanteffect (P> 0.05) on the percentage of carcasses and abdominal fat of broiler chickens. Broiler chickenaged five weeks. It was concluded that the provision of different red sweet potato flour in feed did notsignificantly affect slaughter weight, carcass weight, and abdominal fat percentage of broilerchickens. There is a tendency for broilers fed with red sweet potato flour to have heavier cut weights,a more significant portion of carcasses and an increase in the level of red yam, and a decrease inabdominal fat content and the addition of red yam levels in the feed.


2016 ◽  
Vol 78 (6-12) ◽  
Author(s):  
Amir H. M. S. ◽  
Nurun N. ◽  
Nida Iqbal ◽  
Nur F. R. ◽  
Lee L. H. ◽  
...  

Natural sources of antioxidants are derived from fruits, vegetables and wine, whilst artificial supplements are from teas and spices. Sweet potato (Ipomoea batatas) is an excellent natural source of vitamins and minerals, and likely a great source of antioxidant. The objective of this study  is to analyze the antioxidant activity of orange sweet potato (Vitato) and  purple sweet potato (All purple), prepared as heat dry and  moist heat for 30 minutes at 100oC. All the samples were obtained from Pasir Puteh and MARDI Telong, Bachok, Kelantan, respectively. Both samples were soaked into methanol to obtain the crude extract prior to analyzing for antioxidant activity by using 2, 2-diphenyl-1-picryl hydrazyl (DPPH). IC50 values of dry heat and moist heat Vitato were 0.40mg/L and 0.20mg/L while dry heat and moist heat, All purple were 0.32mg/L and 0.19mg/L, respectively. Both moist heat samples enjoyed higher scavenging activities compared to dry heat samples. However, the All purple sample of moist heat is the most superior one. Significant difference of IC50values between dry heat and moist heat sample differ significantly. Thus, this study clearly demonstrated that moist heat sweet potato exhibited  excellent increase in antioxidant activity.


Food Research ◽  
2021 ◽  
Vol 5 (S1) ◽  
pp. 73-79
Author(s):  
N.A. Zulkifli ◽  
M.Z.M. Nor ◽  
F.N. Omar ◽  
A. Sulaiman ◽  
M.N. Mokhtar

Sweet potato (Ipomoea batatas (L.) Lam) is one of the main crops worldwide. However, systematic properties characterization of this crop is still required, particularly on the Malaysian local sweet potatoes. Hence, this study aims to determine the proximate composition and the energy value of five common varieties of local sweet potato (Anggun 1, Anggun 2, Anggun 3, White, and VitAto) in Malaysia. For each variety, three different parts of the tuberous root which were the skin, the cortex, and the mixture of cambium and parenchyma were characterized. The findings indicated that VitAto exhibited the highest starch (16.95% – 17.17%) and crude protein (0.86% – 1.15%) contents in all parts as compared to other varieties, hence reflecting its potentials to be further processed for a mass starch production. Among all the parts, the skin contained the highest crude protein, crude fat, ash and crude fibre, which can be further utilized to produce by-products such as animal feed. The findings in this study serve as a baseline for the future starch and byproducts production from local sweet potatoes.


Sign in / Sign up

Export Citation Format

Share Document