scholarly journals Validation of a Real-Time Polymerase Chain Reaction Assay for the Identification of Meloidogyne arenaria

Plant Disease ◽  
2011 ◽  
Vol 95 (7) ◽  
pp. 835-838 ◽  
Author(s):  
Paula Agudelo ◽  
Stephen A. Lewis ◽  
Bruce A. Fortnum

Meloidogyne arenaria is an economically important parasite of many crops worldwide. Identification and detection of this species in soil samples is necessary for the design of crop rotation systems, selection of resistant cultivars, and potential use of biological control options. The objective of this study was to develop and validate a real-time polymerase chain reaction (PCR) assay, using species-specific primers and SYBR Green I Dye, for identification of M. arenaria. The specificity of the assay was confirmed by testing for amplification of DNA from other Meloidogyne spp. and from M. arenaria populations of different geographic origins. Field soil samples containing a mixture of M. arenaria and M. incognita were used to compare identification by the real-time PCR assay with identification by esterase phenotype analysis of mature females and by morphometrics of juveniles. The real-time PCR assay provided an accurate and sensitive means for the identification of single juveniles from soil samples.

2009 ◽  
Vol 99 (5) ◽  
pp. 582-590 ◽  
Author(s):  
Renaud Ioos ◽  
Céline Fourrier ◽  
Gabriela Iancu ◽  
Thomas R. Gordon

Fusarium circinatum is the causal agent of pitch canker disease on numerous Pinus spp. This aggressive fungus may infect pine seed cryptically and, therefore, can easily be spread long distances by the seed trade. F. circinatum has recently been listed as a quarantine organism in numerous countries throughout the world, which prompted the development of a specific and sensitive tool for the detection of this pathogen in conifer seed. A new detection protocol for F. circinatum based on a biological enrichment step followed by a real-time polymerase chain reaction (PCR) assay was developed. Several enrichment protocols were compared and a 72-h incubation of the seed with potato dextrose broth was the most efficient technique to increase F. circinatum biomass before DNA extraction. The relative accuracy, specificity, and sensitivity of the real-time PCR assay was evaluated in comparison with a previously published conventional PCR test on 420 seed DNA extracts. The real-time PCR described here proved to be highly specific and significantly more sensitive than the conventional PCR, and enabled the detection of F. circinatum in samples artificially contaminated with less than 1/1,000 infected seed, as well as in naturally infected samples. Last, in order to routinely check the quality of the seed DNA extracts, a primer–probe combination that targets a highly conserved region within the 18S ribosomal DNA in plants or fungi was successfully developed. This assay allows for quick and reliable detection of F. circinatum in seed, which can help to prevent long-distance spread of the pathogen via contaminated seed lots.


2006 ◽  
Vol 89 (1) ◽  
pp. 240-244 ◽  
Author(s):  
Zhi-Qin Yue ◽  
Hong Liu ◽  
Wei-Ji Wang ◽  
Zhi-Wen Lei ◽  
Cheng-Zhu Liang ◽  
...  

Abstract An assay was developed for the detection of infectious hypodermal and hematopoietic necrosis virus (IHHNV) based on real-time quantitative polymerase chain reaction (PCR). A pair of primers and a TaqMan probe were designed that are specific for the recognition of a conservative region in the IHHNV genome. The IHHNV real-time PCR assay had a detection limit of 9 DNA copies,with a dynamic range of detection between 9 106 and 9 DNA copies. The primer pairs and probe were specific to IHHNV and did not cross-reactwith shrimp genomic DNAor other shrimp viruses such as White Spot Syndrome Virus (WSSV), Monodon Baculovirus (MBV), and hepatopancreatic parvovirus (HPV). This assay has a broad application for basic and clinical investigations. For clinical samples, the real-time PCR assay detected all the positive samples screened by conventional PCR, which indicated the sensitivity of the real-time assay. The IHHNV real-time PCR assay with high sensitivity, specificity, wide range of detection ability, and simplicity is particularly useful for screening large numbers of specimens and measuring viral loads to monitor the broodstock.


2002 ◽  
Vol 65 (7) ◽  
pp. 1158-1165 ◽  
Author(s):  
S. LAHIFF ◽  
M. GLENNON ◽  
J. LYNG ◽  
T. SMITH ◽  
N. SHILTON ◽  
...  

We describe a real-time polymerase chain reaction (PCR) assay for the detection of bovine DNA extracted from meat and bone meal (MBM) samples. PCR primers were used to amplify a 271-bp region of the mitochondrial ATPase 8–ATPase 6 gene, and a fluorogenic probe (BOV1) labeled with a 5′ FAM reporter and a 3′ TAMRA quencher was designed to specifically detect bovine PCR product. The specificity of the BOV1 probe for the detection of the bovine PCR product was confirmed by Southern blot hybridization analysis of the probe with PCR products generated from ovine, porcine, and bovine genomic DNA extracted from blood and with PCR products generated from genomic DNA extracted from single-species laboratory scale rendered MBM samples. The specificity of the BOV1 probe was also evaluated in real-time PCR reactions including these genomic targets. Both methods demonstrated that the BOV1 probe was specific for the detection of bovine PCR product. The BOV1 probe had a detection limit of 0.0001% bovine material by Southern blot DNA probe hybridization analysis and a detection limit of 0.001% bovine material in the real-time PCR assay. Application of the real-time PCR assay to six industrial samples that had previously tested positive for the presence of bovine material with a conventional PCR assay yielded positive results with the real-time PCR assay for four samples.


2014 ◽  
Vol 34 (1) ◽  
pp. 29-33 ◽  
Author(s):  
Gisele M. Bacanelli ◽  
Carlos A. N. Ramos ◽  
Flábio R. Araújo

The rickettsia Anaplasma marginale is considered the main agent of bovine anaplasmosis. Due the nonspecific clinical signs of the anaplasmosis, the diagnosis of infection depends of laboratory confirmation. In recent years, molecular diagnostic methods have been used to detect A. marginale in cattle. However, the existence of a large number of assays of different sensitivity and cost makes the choice of an appropriate test difficult. In the present study, a real-time Polymerase Chain Reaction (PCR) based on the msp5 target gene was quantitatively assessed and compared to an end point PCR. Both reactions were subjected to sensitivity and specificity evaluation using plasmid DNA and samples from cattle experimentally infected with A. marginale. A comparative field trial of the tests was carried out using samples of cattle from a stable enzootic area for A. marginale. The real-time PCR showed a higher sensitivity than the end point PCR. This reaction (i.e. real-time PCR) was able to detect one copy of the msp5 gene in 100 ηg of plasmidial DNA, and more than 80% of its results were positive among experimentally infected animals seven days after infection. In addition, based on in silico analysis, the real-time PCR evaluated in the present study appears to be useful for the detection of A. ovis.


2002 ◽  
Vol 92 (8) ◽  
pp. 870-876 ◽  
Author(s):  
Min Qi ◽  
Yinong Yang

Rice blast, caused by Magnaporthe grisea, is a serious fungal disease of rice worldwide. Currently, evaluation of the fungal pathogenicity and host resistance is mainly based on a disease rating or measurement of blast lesion number and size. However, these methods only provide visual estimation rather than accurate measurement of fungal growth in rice plants. In this study, DNA-based real-time polymerase chain reaction (PCR) and RNA-based northern blot/phosphoimaging analyses were evaluated to quantify M. grisea. Both methods were sensitive, specific, and reproducible and could accurately measure the relative growth and absolute biomass of M. grisea. The real-time PCR analysis showed that the growth of M. grisea in seedling leaves of susceptible cultivars (M201 and Wells) was ≈46 to 80 times higher than that of a resistant cultivar (Drew) at 4 and 6 days after inoculation. The data obtained from the real-time PCR assays also were consistent with that from northern blot/ phosphoimaging analysis. However, the real-time PCR approach was much faster and more convenient in most cases. Therefore, it is an excellent tool for in planta quantification of M. grisea and can be used for reliable assessment of fungal pathogenicity and host resistance


Plant Disease ◽  
2011 ◽  
Vol 95 (6) ◽  
pp. 673-682 ◽  
Author(s):  
Monica Blanco-Meneses ◽  
Jean Beagle Ristaino

Peronospora tabacina is an obligate plant pathogen that causes blue mold of tobacco. The disease is difficult to diagnose before the appearance of symptoms and can be easily spread in nonsymptomatic tobacco seedlings. We developed a real-time polymerase chain reaction (PCR) assay for P. tabacina that uses 5′ fluorogenic exonuclease (TaqMan) chemistry to detect and quantify pathogen DNA from diseased tissue. The primers and probe were designed using 5.8S ribosomal DNA sequences from 12 fungal and oomycete tobacco pathogens and 24 Peronospora spp. The PtabBM TaqMan assay was optimized and performed with a final concentration of 450 nM primers and 125 nM probe. The real-time TaqMan assay was assessed for sensitivity and the lower detection limit was 1 fg of DNA. The assay was specific for P. tabacina. None of the DNA from other tobacco pathogens, nonpathogens, or the host were amplified. The PtabBM TaqMan assay was useful for detection of P. tabacina in field samples, artificially inoculated leaves, roots, and systemically infected tobacco seedlings. The assay was used to quantify host resistance and it was possible to detect the pathogen 4 days postinoculation in both medium-resistant and susceptible tobacco cultivars. The real-time PCR assay for P. tabacina will be a valuable tool for the detection of the pathogen and of use to regulatory agencies interested in preventing the spread of blue mold.


2017 ◽  
Vol 149 (2) ◽  
pp. 265-275
Author(s):  
Shan Wu ◽  
Yong-Qiang He ◽  
Xing-Meng Lu ◽  
Xiao-Feng Zhang ◽  
Jiang-Bing Shuai ◽  
...  

AbstractAn effective multiplex real-time polymerase chain reaction (PCR) assay for the simultaneous detection of three major pathogens,Nosema bombycisNägeli (Microsporidia: Nosematidae),Bombyx morinucleopolyhedrovirus (Baculoviridae: genusAlphabaculovirus) (NPV), andBombyx moridensovirus (Parvoviridae: genusIteravirus) (DNV), in silkworms (Bombyx mori(Linnaeus); Lepidoptera: Bombycidae) was developed in this study. Polymerase chain reaction and real-time PCR tests and basic local alignment search tool searches revealed that the primers and probes used in this study had high specificities for their target species. The ability of each primer/probe set to detect pure pathogen DNA was determined using a plasmid dilution panel, in which under optimal conditions the multiplex real-time PCR assay showed high efficiency in the detection of three mixed target plasmids with a detection limit of 8.5×103copies forN. bombycisandBombyx moriNPV (BmNPV) and 8.5×104copies forBombyx moriDNV (BmDNV). When the ability to detect these three pathogens was examined in artificially inoculated silkworms, our method presented a number of advantages over traditional microscopy, including specificity, sensitivity, and high-throughput capabilities. Under the optimal volume ratio for the three primer/probe sets (3:2:2=N. bombycis:BmNPV:BmDNV), the multiplex real-time PCR assay showed early detection of BmNPV and BmDNV by day 1 post inoculation using DNA templates of the three pathogens in various combinations from individually infected silkworms; the early detection ofN. bombyciswas possible by day 3 post inoculation using the DNA isolated from the midgut ofN. bombycis-infected silkworms.


2007 ◽  
Vol 53 (3) ◽  
pp. 391-397 ◽  
Author(s):  
Gehua Wang ◽  
Erin Becker ◽  
Christine Mesa

The optimal 6-carboxy-X-rhodamine (ROX) concentration, which is used as a passive reference dye for real-time quantitative polymerase chain reaction (PCR) with molecular beacon chemistry, was determined with the Mx4000™ Multiplex Quantitative PCR System. Additionally, the effects of changing ROX concentrations on PCR reproducibility, Ct values, and efficiency were investigated with this system by using the PCR data obtained from amplification of the Escherichia coli shiga toxin 2 (stx2) gene and the Campylobacter jejuni luxS gene. This study indicated that different ROX concentrations influence many aspects of the real-time PCR reaction. ROX concentration variation could have consequences in the analysis of quantitative data and may lead to erroneous results. This study further indicated that the optimal ROX concentration is 60 nmol/L for real-time PCR, using molecular beacon chemistry for PCR assay of luxS and stx2 genes.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Subeen Hong ◽  
Seung Mi Lee ◽  
Sohee Oh ◽  
So Yeon Kim ◽  
Young Mi Jung ◽  
...  

AbstractTo examine the detection performance of a peptide nucleic acid (PNA) probe-based real-time time polymerase chain reaction (PCR) assay to detect common aneuploidies. Using amniotic fluid samples, PNA probe based real-time PCR (Patio DEP Detection Kit; SeaSun Biomaterials, Korea) assay was performed. PNA probe was designed to hybridize to similar sequences located on different segments of target chromosomes (21, 18, and 13) and a reference chromosome. Amplification of target sequences and melting curve analysis was performed. When analyzing the melting curve, the ratio of the peak height of the target and reference chromosome was calculated and determined as aneuploidy if the ratio of peak height was abnormal. All the results from the PNA probe-based real-time PCR and melting curve analyses were compared to those from conventional karyotyping. Forty-two cases with common aneuploidies (24 of trisomy 21, 12 of trisomy 18, and 6 of trisomy 13) and 131 cases with normal karyotype were analyzed. When comparing the karyotyping results, the sensitivity and specificity of the PNA probe-based real-time PCR assay were both 100%. The level of agreement was almost perfect (k = 1.00). PNA real-time PCR assay is a rapid and easy method for detecting common aneuploidies.


Sign in / Sign up

Export Citation Format

Share Document