scholarly journals Sensitivity of Mycosphaerella fijiensis from Banana to Trifloxystrobin

Plant Disease ◽  
2001 ◽  
Vol 85 (12) ◽  
pp. 1264-1270 ◽  
Author(s):  
K. M. Chin ◽  
M. Wirz ◽  
D. Laird

An ascospore germination method was developed and validated to assess the sensitivity of bulk samples of Mycosphaerella fijiensis to trifloxystrobin. Using this method, the sensitivity of 142 ascospore samples from banana plantations not treated with strobilurins was analyzed to establish a baseline of pathogen sensitivity. A bulk method was utilized for monitoring purposes because it avoids potential complications due to the isolation and propagation of single-spore isolates and enables the testing of larger samples. Following intensive use of strobilurins (6 to 11 applications per year) over 4 years, under conditions of high disease pressure and the absence of sanitary measures at a development site in Costa Rica, bulk samples with 50% effective concentration (EC50) resistance factors (RFs) in excess of 500 compared with the mean baseline sensitivity were detected. Single-ascospore isolates derived from spores germinating at the discriminatory dose of 3 μg/ml were also resistant, suggesting that the frequency of resistant individuals in bulk samples could be estimated from the relative numbers of ascospores growing at this dose. The resistance of selected isolates was confirmed in planta. In vitro tests with four resistant and two sensitive single-ascospore isolates collected from different locations and times indicated possible cross-resistance of trifloxystrobin to azoxystrobin, famoxadone, and fenamidone, but not to propiconazole.

2018 ◽  
Vol 19 (1) ◽  
pp. 45-45
Author(s):  
Dolores Fernández-Ortuño ◽  
Alejandra Vielba-Fernández ◽  
Alejandro Pérez-García ◽  
Juan A. Torés ◽  
Antonio de Vicente

Botrytis cinerea Pers. is an important fungal pathogen responsible for gray mold, one of the most economically important diseases of strawberry (Fragaria × ananassa) worldwide. The primary disease management strategy involves the application of different classes of fungicides, including the sterol biosynthesis inhibitor class III fungicide fenpyrazamine. In 2014 and 2015, strawberries affected with gray mold symptoms were collected from eight locations in Huelva, where fenhexamid had been used extensively. Twenty-five B. cinerea single-spore isolates were examined to determine EC50 values and to determine a discriminatory dose to monitor fenpyrazamine resistance in the field in future studies. The in vitro tests divided the isolates into two groups: 15 sensitive (EC50 from 0.02 to 1.3 μg/ml) and 10 resistant (EC50 from 50.1 to 172.6 μg/ml), which showed cross-resistance with fenhexamid. Performance of fenpyrazamine in in vivo studies was also carried out. Only the fenpyrazamine-resistant isolates developed gray mold on the fungicide-treated fruit. This is the first report of fenpyrazamine resistance in B. cinerea from strawberry fields in Spain and cross-resistance with fenhexamid.


Plant Disease ◽  
2015 ◽  
Vol 99 (2) ◽  
pp. 267-273 ◽  
Author(s):  
Hong-Jie Liang ◽  
Ya-Li Di ◽  
Jin-Li Li ◽  
Hong You ◽  
Fu-Xing Zhu

Sclerotinia sclerotiorum is a cosmopolitan plant pathogen notable for its wide host range. The quinone outside inhibitor (QoI) fungicide pyraclostrobin has not been registered for control of S. sclerotiorum in China. In this study, baseline sensitivity of pyraclostrobin was established based on effective concentration for 50% inhibition of mycelial growth (EC50) values of 153 isolates of S. sclerotiorum collected from five provinces of China and toxicity of alternative oxidase inhibitor salicylhydroxamic acid (SHAM) to S. sclerotiorum was determined. Results showed that the frequency distribution of EC50 values of the 153 isolates was unimodal but with a right-hand tail. The mean EC50 value was 0.1027 μg/ml and the range of EC50 values was 0.0124 to 0.6324 μg/ml. Applied as a preventive fungicide in pot experiments, pyraclostrobin at 5, 15, and 45 μg/ml provided control efficacies of 61, 77, and 100%, respectively. There was no positive cross-resistance between pyraclostrobin and carbendazim or dimethachlon. EC50 values for SHAM against four isolates of S. sclerotiorum were 44.4, 51.8, 54.4, and 68.7 μg/ml. SHAM at 20 μg/ml could significantly increase not only the inhibitory effect of pyraclostrobin on mycelial growth on potato dextrose agar media but also the control efficacy in planta. These results indicated that SHAM should not be added into artificial media in in vitro assay of S. sclerotiorum sensitivity to pyraclostrobin. This has broad implications for assay of sensitivity of fungal pathogen to QoI fungicides.


Plant Disease ◽  
2019 ◽  
Vol 103 (2) ◽  
pp. 331-337 ◽  
Author(s):  
Wayne M. Jurick ◽  
Otilia Macarisin ◽  
Verneta L. Gaskins ◽  
Wojciech J. Janisiewicz ◽  
Kari A. Peter ◽  
...  

Penicillium spp. cause blue mold of stored pome fruit. These fungi reduce fruit quality and produce mycotoxins that are regulated for processed fruit products. Control of blue mold is achieved by fungicide application, and in 2015 Academy (active ingredients fludioxonil and difenoconazole) was released for use on pome fruit to manage postharvest blue mold. Baseline sensitivity for fludioxonil but not difenoconazole has been determined for P. expansum. To establish the distribution of sensitivity to difenoconazole before commercial use of Academy, 97 unexposed single-spore isolates from the United States and abroad were tested in vitro. Baseline EC50 values ranged from 0.038 to 0.827 µg/ml of difenoconazole with an average of 0.16 µg/ml. Complete inhibition of mycelial growth for all but three isolates occurred at 5 µg/ml of difenoconazole, whereas 10 µg/ml did not support growth for any of the isolates examined. Hence, 5 µg/ml of difenoconazole is recommended for phenotyping Penicillium spp. isolates with reduced sensitivity. Isolates with resistance to pyrimethanil and to both thiabendazole and pyrimethanil were observed among the isolates from the baseline collection. Academy applied at the labeled rate had both curative and protectant activities and controlled four representative Penicillium spp. from the baseline population. This information can be used to monitor future shifts in sensitivity to this new postharvest fungicide in Penicillium spp. populations.


2015 ◽  
Vol 119 (6) ◽  
pp. 447-470 ◽  
Author(s):  
Lina Escobar-Tovar ◽  
Mauricio Guzmán-Quesada ◽  
Jorge A. Sandoval-Fernández ◽  
Miguel A. Gómez-Lim

Plant Disease ◽  
2020 ◽  
Vol 104 (11) ◽  
pp. 2986-2993
Author(s):  
Yong Wang ◽  
Miaomaio Wang ◽  
Letian Xu ◽  
Yang Sun ◽  
Juntao Feng

In the present study, a total of 95 Botrytis cinerea single-spore strains collected from different hosts in Shaanxi Province of China were characterized for their sensitivity to the sterol demethylation inhibitor fungicide flusilazole. The effective concentration for 50% inhibition of mycelial growth (EC50) of flusilazole ranged from 0.021 to 0.372 µg/ml, with an average value of 0.093 µg/ml. Cross-resistance between flusilazole and commonly used fungicides was not detected, and no flusilazole-resistant mutants were induced. Both on detached strawberry leaves and in greenhouse experiments, flusilazole was more effective than the commonly used fungicide carbendazim at reducing gray mold. After culture on PDA plates or detached strawberry leaves, no difference in sclerotia production or pathogenicity was detected between two strains, WG12 (most sensitive to flusilazole) and MX18 (least sensitive to flusilazole). After treatment with flusilazole, however, the two strains lost the ability to produce sclerotia, and oxalic acid and ergosterol contents in mycelium decreased. Interestingly, the inhibition rate of ergosterol content in MX18 was significantly lower than that in WG12. Expression of Cyp51, BcatrD, and Bcmfs1 genes all increased after treatment with flusilazole, especially the Cyp51 and BcatrD genes. However, the expression of Cyp51 gene or BcatrD gene in WG12 and MX18 were significantly different from each other after treatment with flusilazole. In addition, no point mutations in Cyp51 gene were found in MX18. These data suggest flusilazole is a promising fungicide for resistance management of gray mold and also provided novel insights into understanding the resistance mechanism of flusilazole against plant pathogens.


Plant Disease ◽  
2012 ◽  
Vol 96 (3) ◽  
pp. 416-422 ◽  
Author(s):  
F. P. Chen ◽  
J. R. Fan ◽  
T. Zhou ◽  
X. L. Liu ◽  
J. L. Liu ◽  
...  

Sterol 14α-demethylase inhibitors (DMIs) continue to be important in the management of brown rot of Monilinia spp. worldwide. In this study, the sensitivity of 100 Monilinia fructicola isolates from four unsprayed orchards and two packinghouses in Beijing, China, to the new DMI fungicide SYP-Z048 was evaluated and ranged from 0.003 to 0.039 and 0.016 to 0.047 μg/ml, respectively. Laboratory mutants resistant to SYP-Z048 were generated using UV irradiation but no mutants occurred spontaneously. Resistance was stable after 10 weekly consecutive transfers on fungicide-free medium. Three parameters, including growth rate, sporulation in vitro, and lesion area, were significantly different when sensitive isolates and resistant mutants were analyzed as groups. Mutants grew more slowly and developed significantly smaller lesions on detached fruit, and their sporulation ability in vitro was reduced. Cross resistance was found between SYP-Z048 and propiconazole (ρ = 0.82, P < 0.0001) but not between SYPZ048 and tridemorph, carbendazim, procymidone, azoxystrobin, or pyrimethanil. SYP-Z048 resistance in mutants exhibiting 50% mycelial growth inhibition values greater than 0.3 μg/ml was correlated with the presence of a mutation in the CYP51 gene that encodes the target protein for DMI fungicides. The mutation caused an amino acid change from tyrosine to phenylalanine at position 136 (Y136F). To our knowledge, this is the first baseline sensitivity of M. fructicola collected from China to a DMI fungicide. The inability of M. fructicola to generate spontaneous DMI-resistant mutants coupled with reduced fitness of Y136F mutants can explain why this target site mutation has not yet emerged as a DMI fungicide resistance determinant in M. fructicola field populations worldwide.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 324
Author(s):  
Laura Buzón-Durán ◽  
Natalia Langa-Lomba ◽  
Vicente González-García ◽  
José Casanova-Gascón ◽  
Jesús Martín-Gil ◽  
...  

In a context in which the incidence and severity of grapevine fungal diseases is increasing as a result of both climate change and modern management culture practices, reducing the excessive use of phytosanitary products in viticulture represents a major challenge. Specifically, grapevine trunk diseases (GTDs), caused by several complexes of wood decay or xylem-inhabiting fungi, pose a major challenge to vineyard sustainability. In this study, the efficacy of chitosan oligomers (COS)–amino acid conjugate complexes against three fungal species belonging to the Botryosphaeriaceae family (Neofusicoccum parvum, Diplodia seriata, and Botryosphaeria dothidea) was investigated both in vitro and in planta. In vitro tests led to EC50 and EC90 effective concentrations in the 254.6−448.5 and 672.1−1498.5 µg·mL−1 range, respectively, depending on the amino acid involved in the conjugate complex (viz. cysteine, glycine, proline or tyrosine) and on the pathogen assayed. A synergistic effect between COS and the amino acids was observed against D. seriata and B. dothidea (synergy factors of up to 2.5 and 2.8, respectively, according to Wadley’s method). The formulations based on COS and on the conjugate complex that showed the best inhibition rates, COS−tyrosine, were further investigated in a greenhouse trial on grafted vines of two varieties (”Tempranillo” on 775P and “Garnacha” on 110R rootstock), artificially inoculated with the mentioned three Botryosphaeriaceae species. The in planta bioassay revealed that the chosen formulations induced a significant decrease in disease severity against N. parvum and B. dothidea. In summary, the reported conjugate complexes may be promising enough to be worthy of additional examination in larger field trials.


Plant Disease ◽  
2002 ◽  
Vol 86 (11) ◽  
pp. 1240-1246 ◽  
Author(s):  
Gerald L. Miller ◽  
Katherine L. Stevenson ◽  
Leon L. Burpee

In response to reports of reduced efficacy of propiconazole for control of dollar spot, isolates of Sclerotinia homoeocarpa were collected from several locations in Georgia and tested for sensitivity to propiconazole and other demethylation-inhibiting (DMI) fungicides. Two discriminatory concentrations of propiconazole (0.02 and 0.2 μg ml-1) were used to detect lower in vitro sensitivity in two populations that had been exposed repeatedly to propiconazole than in four nonexposed populations. Mean 50% effective concentration (EC50) values for a nonexposed population (baseline) and a DMI-exposed population were 0.0049 and 0.0283 μg ml-1, respectively. Positive correlations were significant among log10 EC50 values for propiconazole, fenarimol, and myclobutanil but not between triadimefon and any of the other three fungicides, indicating cross-resistance relationships in this pathogen may not be universal among the DMIs. In greenhouse experiments, propiconazole-treated bentgrass was inoculated with seven isolates of S. homoeocarpa differing in sensitivity to propiconazole. Incubation period decreased and relative area under the disease progress curve and disease severity 28 days after inoculation increased linearly with increasing log10 EC50 value of the isolate. Results of this study confirm a significant relationship between in vitro sensitivity of S. homoeocarpa and in planta control efficacy of propiconazole and provide evidence of field resistance to propiconazole in S. homoeocarpa in Georgia.


Plant Disease ◽  
2013 ◽  
Vol 97 (1) ◽  
pp. 81-85 ◽  
Author(s):  
Dolores Fernández-Ortuño ◽  
Fengping Chen ◽  
Guido Schnabel

Chemical control of gray mold of strawberry caused by Botrytis cinerea is essential to prevent pre- and postharvest fruit decay. For more than 10 years, the anilinopyrimidine (AP) cyprodinil and the phenylpyrrole fludioxonil (Switch 62.5WG) have been available to commercial strawberry producers in the United States for gray mold control. Both active ingredients are site-specific inhibitors and, thus, prone to resistance development. In this study, 217 single-spore isolates of B. cinerea from 11 commercial strawberry fields in North and South Carolina were examined for sensitivity to both fungicides. Isolates that were sensitive (53%), moderately resistant (30%), or resistant (17%) to cyprodinil were identified based on germ tube inhibition at discriminatory doses of cyprodinil at 1 and 25 mg/liter at 10 of the 11 locations. None of the isolates was fludioxonil resistant. Phenotypes that were moderately resistant or resistant to cyprodinil were not associated with fitness penalties for mycelial growth rate, spore production, or osmotic sensitivity. Detached fruit assays demonstrated cross resistance between the two AP fungicides cyprodinil and pyrimethanil, and that isolates that were characterized in vitro as moderately resistant or resistant were equivalent in pathogenicity on fruit sprayed with pyrimethanil (currently the only AP registered in strawberry as a solo formulation). This suggests that the in vitro distinction of moderately resistant and resistant isolates is of little if any field relevance. The absence of cross-resistance with fludioxonil, iprodione, cycloheximide, and tolnaftate indicated that multidrug resistance in the form of multidrug resistance phenotypes was unlikely to be involved in conferring resistance to APs in our isolates. Implications for resistance management and disease control are discussed.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4926-4926 ◽  
Author(s):  
Mary Adams ◽  
Peter Schafer ◽  
J. Blake Bartlett

Abstract Abstract 4926 Introduction Despite recent advances in the treatment of Multiple Myeloma (MM) the disease remains incurable and initial response to therapy is followed inexorably by relapse, chemoresistance and death. Therefore, relapsed and refractory disease remains an area of high unmet need with an urgent need for new therapies that are able to exert significant effects on the tumor. Lenalidomide (Len), an oral anti-proliferative and immunomodulatory drug, has been approved in combination with dexamethasone (Dex) for previously treated MM. Early clinical results also suggest that pomalidomide (Pom) is effective in the treatment of relapsed and refractory MM, including patients who have previously been treated with Len. The achievable plasma levels of each agent and pharmacological activity in vitro suggest very little difference in terms of immune enhancing properties. In contrast, Pom is a more potent anti-proliferative agent. However, it is unknown how MM cell sensitivity to Pom might be affected by resistance to Len or how sensitivity to Len might be affected by prior treatment with Pom. The use of a cellular model mimicking the relapse/resistance issue found in the clinic can provide valuable information directly translatable to the treatment of patients. Methods In this study we have generated MM cell resistance by long term exposure to either Len or Pom at levels attainable in patient plasma. H929 and KMS-12-BM MM cell lines were exposed to Len or Pom at clinically achievable concentrations (1 μM Len or 0.1 μM Pom) for a continuous period of 5 months. Cell growth was measured by ATP assay. Resistance factors were calculated by dividing the compound growth IC50 in the long term treated cells by the growth IC50 in the parental cells. Results The continued culture of H929 and KMS-12-BM cells with Len resulted in Len resistance factors of >2270 and >47600, and Pom resistance factors of 725 and 280, respectively. Therefore, in the Len-resistant cells, cross-resistance to Pom was lower than resistance to Len. Conversely, the continued culture of H929 and KMS-12-BM cells with Pom resulted in Len resistance factors of >2270 and >47600, and Pom resistance factors of only 22 and 130, respectively. There was complete cross-resistance to Len in the Pom-resistant cells. Furthermore, the addition of Dex was able to improve the sensitivity of the resistant cells to Pom to levels that are attainable in the plasma of patients and far more than it improved sensitivity to Len. Thus, while Pom (and Pom/Dex) retained efficacy in Len-resistant MM cells, MM cells previously exposed to Pom became refractory to Len (and Len/Dex). Conclusions Recent clinical data suggests that Pom/Dex is active in relapsed/refractory MM patients who have previously been treated with Len/Dex. Our results provide mechanistic support for the importance of the anti-proliferative activity of Pom (and Pom/Dex) in this setting. However, our results also suggest that Len (and Len/Dex) may be less effective in patients who have previously been treated with Pom, especially in the context of relapsed/refractory disease where immune function is likely to get progressively weaker with successive lines of therapy and thereby less amenable to immune enhancing agents. Disclosures Adams: Celgene: Employment. Off Label Use: Pomalidomide is an anti-proliferative and immunomodulatory agent that is in clinical development for relapsed/refractory MM. Schafer:Celgene: Employment. Bartlett:Celgene: Employment.


Sign in / Sign up

Export Citation Format

Share Document