scholarly journals The Involvement of Jasmonic Acid, Ethylene, and Salicylic Acid in the Signaling Pathway of Clonostachys rosea-Induced Resistance to Gray Mold Disease in Tomato

2019 ◽  
Vol 109 (7) ◽  
pp. 1102-1114 ◽  
Author(s):  
Qiuying Wang ◽  
Xiuling Chen ◽  
Xinfeng Chai ◽  
Dongqi Xue ◽  
Wei Zheng ◽  
...  

Tomato gray mold disease caused by Botrytis cinerea is a serious disease that threatens tomato production around the world. Clonostachys rosea has been used successfully as a biocontrol agent against divergent plant pathogens, including B. cinerea. To understand the signal transduction pathway of C. rosea-induced resistance to tomato gray mold disease, the effects of C. rosea on gray mold tomato leaves along with changes in the activities of three defense enzymes (phenylalanine ammonialyase [PAL], polyphenol oxidase [PPO], and catalase [CAT]), second messengers (nitric oxide [NO], hydrogen peroxide [H2O2], and superoxide anion radical [O2−]), and stress-related genes (mitogen-activated protein kinase [MAPK], WRKY, Lexyl2, and atpA) in four different hormone-deficient (jasmonic acid [JA], ethylene [ET], salicylic acid [SA], and gibberellin) tomato mutants were investigated. The results revealed that C. rosea significantly inhibited the growth of mycelia and spore germination of B. cinerea. Furthermore, it reduced the incidence of gray mold disease, induced higher levels of PAL and PPO, and induced lower levels of CAT activities in tomato leaves. Moreover, it also increased NO, H2O2, and O2− levels and the gene expression levels of WRKY, MAPK, atpA, and Lexyl2. The incidence of gray mold disease in four hormone-deficient mutants was higher than that in the corresponding wild-type tomato plants. Among all of these hormone-deficient tomato mutants, JA had the most significant effect in regulating the different signal molecules. Additional study suggested that JA upregulated the expression of Lexyl2, MAPK, and WRKY but downregulated atpA. Furthermore, JA also enhanced the activity of PAL, PPO, and CAT and the production of NO and H2O2. SA downregulated CAT and PAL, whereas ET upregulated PAL but downregulated CAT. This study is of significance in understanding the regulatory pathways and biocontrol mechanism of C. rosea against B. cinerea.

2010 ◽  
Vol 113-116 ◽  
pp. 1782-1786 ◽  
Author(s):  
L.X. You ◽  
P. Wang

Exogenous jasmonic acid (JA) and salicylic acid (SA) can have an important effect on rice allelopathy. Currently, the role of endogenous JA and SA on rice-barnyard grass interaction is largely unknown. In this study, the levels of JA and SA in tissues and their correlation to rice allelochemicals inducing with barnyard grass are analyzed. Rice allelochemicals production was enhanced by coexistence with barnyard grass and allelochemicals of the allelopathic variety, PI312777 were generally higher than those of non-allelopathic variety, Liaojing9. Furthermore, JA contents of two rice varieties were generally greater in roots than in shoots, and differed clearly with tested times. The SA levels of PI312777 were generally higher than those of Liaojing9 in shoots but opposite trend in roots. The contents of total allelochemicals correlated positively with SA (Pearson correlation, r = 0.91, P < 0.001). These results indicate that as the phytohormones, JA and SA play a provable role in chemical communication between rice and barnyard grass and participate in rice-barnyard grass allelopathic interaction. Future studies should determine the signal molecules in root exudates of barnyard grass and their functions.


2018 ◽  
Vol 31 (12) ◽  
pp. 1271-1279 ◽  
Author(s):  
Xiaochen Jia ◽  
Haihong Zeng ◽  
Wenxia Wang ◽  
Fuyun Zhang ◽  
Heng Yin

Chitosan oligosaccharide (COS) is an effective plant immunity elicitor; however, its induction mechanism in plants is complex and needs further investigation. In this study, the Arabidopsis–Pseudomonas syringae pv. tomato DC3000 (hereafter called DC3000) interaction was used to investigate the induction effect and the underlying mechanisms of COS. COS is effective in inducing resistance to DC3000 in Arabidopsis, and our results demonstrate that treatment with COS 3 days before DC3000 inoculation provided the most effective resistance. Disease severity in jar1 (jasmonic acid [JA]-deficient mutant), NahG, and sid2 (salicylic acid [SA]-deficient mutants) suggest both the SA and JA pathways are required for the Arabidopsis response to DC3000. COS pretreatment induced resistance in wild type (WT), jar1, and also, although to a lesser degree, in NahG and sid2 plants, implying that the SA and JA pathways play redundant roles in COS-induced resistance to DC3000. In COS-pretreated plants, expression of genes related to the SA pathway (PR1, PR2, and PR5) and SA content increased in both WT and jar1. Moreover, expression of genes related to the JA pathway (PDF1.2 and VSP2) and JA content both increased in WT and NahG. In conclusion, COS induces resistance to DC3000 in Arabidopsis by activating both SA- and JA-mediated pathways, although SA and JA pathways play redundant roles in this COS-induced resistance.


2011 ◽  
Vol 24 (4) ◽  
pp. 395-407 ◽  
Author(s):  
Rogier F. Doornbos ◽  
Bart P. J. Geraats ◽  
Eiko E. Kuramae ◽  
L. C. Van Loon ◽  
Peter A. H. M. Bakker

Systemically induced resistance is a promising strategy to control plant diseases, as it affects numerous pathogens. However, since induced resistance reduces one or both growth and activity of plant pathogens, the indigenous microflora may also be affected by an enhanced defensive state of the plant. The aim of this study was to elucidate how much the bacterial rhizosphere microflora of Arabidopsis is affected by induced systemic resistance (ISR) or systemic acquired resistance (SAR). Therefore, the bacterial microflora of wild-type plants and plants affected in their defense signaling was compared. Additionally, ISR was induced by application of methyl jasmonate and SAR by treatment with salicylic acid or benzothiadiazole. As a comparative model, we also used wild type and ethylene-insensitive tobacco. Some of the Arabidopsis genotypes affected in defense signaling showed altered numbers of culturable bacteria in their rhizospheres; however, effects were dependent on soil type. Effects of plant genotype on rhizosphere bacterial community structure could not be related to plant defense because chemical activation of ISR or SAR had no significant effects on density and structure of the rhizosphere bacterial community. These findings support the notion that control of plant diseases by elicitation of systemic resistance will not significantly affect the resident soil bacterial microflora.


2000 ◽  
Vol 12 (11) ◽  
pp. 2175 ◽  
Author(s):  
Joseph D. Clarke ◽  
Sigrid M. Volko ◽  
Heidi Ledford ◽  
Frederick M. Ausubel ◽  
Xinnian Dong

PLoS ONE ◽  
2014 ◽  
Vol 9 (7) ◽  
pp. e102690 ◽  
Author(s):  
Liana Dalcantara Ongouya Mouekouba ◽  
Lili Zhang ◽  
Xin Guan ◽  
Xiuling Chen ◽  
Hongyu Chen ◽  
...  

2006 ◽  
Vol 19 (6) ◽  
pp. 655-664 ◽  
Author(s):  
Qi Li ◽  
Qi-Guang Xie ◽  
Jennifer Smith-Becker ◽  
Duroy A. Navarre ◽  
Isgouhi Kaloshian

The tomato Mi-1 gene confers resistance to root-knot nematodes (Meloidogyne spp.), potato aphids (Macrosiphum euphorbiae), and whiteflies (Bemisia tabaci and B. tabaci biotype B). Resistance to potato aphid is developmentally regulated and is not associated with induction of a hypersensitive response. The NahG transgene that eliminates endogenous salicylic acid (SA) was used to test the role of the SA signaling pathway in the resistance mediated by Mi-1 to potato aphids. Aphids survived longer on NahG tomato plants than on wild type. However, aphid reproduction was not affected on NahG tomato. Aphid resistance in Mi-1 NahG plants was completely abolished and the phenotype was successfully rescued by application of BTH (benzo(1,2,3)-thiaiazole-7-carbothioic acid S-methyl ester), indicating that the SA signaling pathway is an important component of Mi-1-mediated aphid resistance. Using virus-induced gene silencing, one or more mitogen-activated protein kinase (MAPK) cascades required for Mi-1-mediated aphid resistance were identified. Silencing plants for MAPK kinase (LeMKK2) and MAPKs (LeMPK2 and LeMPK1, or LeMPK3) resulted in attenuation of Mi-1-mediated aphid resistance. These results further demonstrate that resistance gene-mediated signaling events against piercing-sucking insects are similar to those against other plant pathogens.


2005 ◽  
Vol 95 (1) ◽  
pp. 76-84 ◽  
Author(s):  
Michal Shoresh ◽  
Iris Yedidia ◽  
Ilan Chet

Trichoderma spp. are effective biocontrol agents for a number of soilborne plant pathogens, and some are also known for their ability to enhance plant growth. It was recently suggested that Trichoderma also affects induced systemic resistance (ISR) mechanism in plants. Analysis of signal molecules involved in defense mechanisms and application of specific inhibitors indicated the involvement of jasmonic acid and ethylene in the protective effect conferred by Trichoderma spp. against the leaf pathogen Pseudomonas syringae pv. lachrymans. Moreover, examination of local and systemic gene expression by real-time reverse transcription-polymerase chain reaction analysis revealed that T. asperellum (T203) modulates the expression of genes involved in the jasmonate/ethylene signaling pathways of ISR (Lox1, Pal1, ETR1, and CTR1) in cucumber plants. We further showed that a subsequent challenge of Trichoderma-preinoculated plants with the leaf pathogen P. syringae pv. lachrymans resulted in higher systemic expression of the pathogenesisrelated genes encoding for chitinase 1, β-1,3-glucanase, and peroxidase relative to noninoculated, challenged plants. This indicates that Trichoderma induced a potentiated state in the plant enabling it to be more resistant to subsequent pathogen infection.


2014 ◽  
Vol 71 (1) ◽  
pp. 72-82 ◽  
Author(s):  
Abdul Rashid War ◽  
Michael Gabriel Paulraj ◽  
Savarimuthu Ignacimuthu ◽  
Hari Chand Sharma

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Xiaokang Chen ◽  
Wenbin Wang ◽  
Pingping Cai ◽  
Ziwei Wang ◽  
Tingting Li ◽  
...  

AbstractMitogen-activated protein kinase (MAPK) cascades play important roles in plant immunity. Previously, we reported that the potato StMKK1 protein negatively regulates Nicotiana benthamiana resistance to Phytophthora infestans. However, the functions of StMKK1 in potato immunity are unknown. To investigate the roles of StMKK1 in potato resistance to different pathogens, such as the potato late-blight pathogen P. infestans, the bacterial wilt pathogen Ralstonia solanacearum, and the gray-mold fungal pathogen Botrytis cinerea, we generated StMKK1 transgenic lines and investigated the response of potato transformants to destructive oomycete, bacterial, and fungal pathogens. The results showed that overexpression and silencing of StMKK1 do not alter plant growth and development. Interestingly, we found that StMKK1 negatively regulated potato resistance to the hemibiotrophic/biotrophic pathogens P. infestans and R. solanacearum, while it positively regulated potato resistance to the necrotrophic pathogen B. cinerea. Further investigation showed that overexpression of StMKK1 suppressed potato pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and salicylic acid (SA)-related responses, while silencing of StMKK1 enhanced PTI and SA-related immune responses. Taken together, our results showed that StMKK1 plays dual roles in potato defense against different plant pathogens via negative regulation of PTI and SA-related signaling pathways.


Sign in / Sign up

Export Citation Format

Share Document