Temporal Dynamics and Spatial Variation of Azoxystrobin and Propiconazole Resistance in Zymoseptoria tritici: A Hierarchical Survey of Commercial Winter Wheat Fields in the Willamette Valley, Oregon
Fungicide resistance can cause disease control failure in agricultural systems, and is particularly concerning with Zymoseptoria tritici, the causal agent of Septoria tritici blotch of wheat. In North America, the first quinone outside inhibitor resistance in Z. tritici was discovered in the Willamette Valley of Oregon in 2012, which prompted this hierarchical survey of commercial winter wheat fields to monitor azoxystrobin- and propiconazole-resistant Z. tritici. Surveys were conducted in June 2014, January 2015, May 2015, and January 2016. The survey was organized in a hierarchical scheme: regions within the Willamette Valley, fields within the region, transects within the field, and samples within the transect. Overall, frequency of azoxystrobin-resistant isolates increased from 63 to 93% from June 2014 to January 2016. Resistance to azoxystrobin increased over time even within fields receiving no strobilurin applications. Propiconazole sensitivity varied over the course of the study but, overall, did not significantly change. Sensitivity to both fungicides showed no regional aggregation within the Willamette Valley. Greater than 80% of spatial variation in fungicide sensitivity was at the smallest hierarchical scale (within the transect) of the survey for both fungicides, and the resistance phenotypes were randomly distributed within sampled fields. Results suggest a need for a better understanding of the dynamics of fungicide resistance at the landscape level.