scholarly journals Tyrosine Phosphorylation of Caveolin 1 by Oxidative Stress Is Reversible and Dependent on the c-src Tyrosine Kinase but Not Mitogen-Activated Protein Kinase Pathways in Placental Artery Endothelial Cells1

2005 ◽  
Vol 73 (4) ◽  
pp. 761-772 ◽  
Author(s):  
Dong-bao Chen ◽  
Su-min Li ◽  
Xiao-Xian Qian ◽  
ChongSoo Moon ◽  
Jing Zheng
2000 ◽  
Vol 278 (6) ◽  
pp. L1138-L1145 ◽  
Author(s):  
Barbara Tolloczko ◽  
Florence C. Tao ◽  
Mary E. Zacour ◽  
James G. Martin

Contractile agonists may stimulate mitogenic responses in airway smooth muscle by mechanisms that involve tyrosine kinases. The role of contractile agonist-evoked activation of tyrosine kinases in contractile signaling is not clear. We addressed this issue using cultured rat airway smooth muscle cells. In these cells, serotonin (5-HT, 1 μM) caused contraction (quantitated by a decrease in cell area), which was blocked by the tyrosine kinase inhibitor genistein (40 μM). Genistein and tyrphostin 23 (40 and 10 μM, respectively) significantly decreased 5-HT-evoked peak Ca2+ responses, and the effect of genistein could be observed in the absence of extracellular Ca2+. The specific inhibitor of mitogen-activated protein kinase kinase PD-98059 (30 μM) had no significant effect on peak Ca2+ levels. Western analysis of cell extracts revealed that 5-HT caused a significant increase in tyrosine phosphorylation of proteins with molecular masses of ∼70 kDa within 10 s of stimulation but no measurable tyrosine phosphorylation of the γ isoform of phospholipase C (PLC-γ). Tyrosine phosphorylation was inhibited by genistein. Furthermore, genistein (40 μM) significantly attenuated 5-HT-induced inositol phosphate production. We conclude that in airway smooth muscle contractile agonists acting on G protein-coupled receptors may activate tyrosine kinase(s), which in turn modulate calcium signaling by affecting, directly or indirectly, PLC-β activity. It is unlikely that PLC-γ or the mitogen-activated protein kinase pathway is involved in Ca2+ signaling to 5-HT.


2000 ◽  
Vol 348 (2) ◽  
pp. 381-387 ◽  
Author(s):  
Barbara E. SLACK

The acetylcholine analogue carbachol rapidly activated mitogen-activated protein kinase (MAPK), and caused tyrosine phosphorylation of the adapter protein p52 Shc and the epidermalgrowth factor (EGF) receptor, in human embryonic kidney cells stably expressing m3 muscarinic receptors. The protein kinase C (PKC) inhibitor GF109203X caused a significant partial inhibition of m3 receptor-mediated activation of MAPK. The PKC-independent MAPK activity elicited by carbachol in the presence of GF109203X was reproducibly abolished by AG1478, an inhibitor of EGF-receptor tyrosine kinase activity, and by the Src tyrosine kinase inhibitor PP1. In a subset of these experiments, GF109203X concomitantly increased carbachol-induced tyrosine phosphorylation of p52 Shc and the EGF receptor. In co-stimulation experiments, carbachol and EGF activated MAPK in a non-additive fashion; moreover, EGF-induced association of Shc with the phosphorylated EGF receptor was inhibited by carbachol. This effect of carbachol was blocked by GF109203X. The results indicate that MAPK activation by m3 receptor stimulation is regulated by two pathways; one dependent on PKC, and the other mediated via the EGF receptor and Src. Moreover, the EGF-receptor-dependent pathway may be subject to negative-feedback regulation via m3 receptor-coupled activation of PKC.


1998 ◽  
Vol 3 (1) ◽  
pp. 23-27 ◽  
Author(s):  
Kathryn Z Guyton ◽  
Myriani Gorospe ◽  
Xiantao Wang ◽  
Yolanda D Mock ◽  
Gertrude C Kokkonen ◽  
...  

2004 ◽  
Vol 381 (2) ◽  
pp. 437-446 ◽  
Author(s):  
Anderson A. ANDRADE ◽  
Patrícia N. G. SILVA ◽  
Anna C. T. C. PEREIRA ◽  
Lirlândia P. de SOUSA ◽  
Paulo C. P. FERREIRA ◽  
...  

Early events play a decisive role in virus multiplication. We have shown previously that activation of MAPK/ERK1/2 (mitogen-activated protein kinase/extracellular-signal-regulated kinase 1/2) and protein kinase A are pivotal for vaccinia virus (VV) multiplication [de Magalhães, Andrade, Silva, Sousa, Ropert, Ferreira, Kroon, Gazzinelli and Bonjardim (2001) J. Biol. Chem. 276, 38353–38360]. In the present study, we show that VV infection provoked a sustained activation of both ERK1/2 and RSK2 (ribosomal S6 kinase 2). Our results also provide evidence that this pattern of kinase activation depends on virus multiplication and ongoing protein synthesis and is maintained independently of virus DNA synthesis. It is noteworthy that the VGF (VV growth factor), although involved, is not essential for prolonged ERK1/2 activation. Furthermore, our findings suggest that the VV-stimulated ERK1/2 activation also seems to require actin dynamics, microtubule polymerization and tyrosine kinase phosphorylation. The VV-stimulated pathway MEK/ERK1/2/RSK2 (where MEK stands for MAPK/ERK kinase) leads to phosphorylation of the ternary complex factor Elk-1 and expression of the early growth response (egr-1) gene, which kinetically paralleled the kinase activation. The recruitment of this pathway is biologically relevant, since its disruption caused a profound effect on viral thymidine kinase gene expression, viral DNA replication and VV multiplication. This pattern of sustained kinase activation after VV infection is unique. In addition, by connecting upstream signals generated at the cytoskeleton and by tyrosine kinase, the MEK/ERK1/2/RSK2 cascade seems to play a decisive role not only at early stages of the infection, i.e. post-penetration, but is also crucial to define the fate of virus progeny.


Sign in / Sign up

Export Citation Format

Share Document