scholarly journals Characterization of female sexual development‐1 ( fsd‐1 ) Transcript Structure, Expression, and Localization in the Fungus Neurospora crassa

2018 ◽  
Vol 32 (S1) ◽  
Author(s):  
Thomas Hurysz ◽  
Bryce Gebhardt ◽  
Mary Pyatt ◽  
Kathryn Emmens ◽  
Christine Toufexis ◽  
...  
Genetics ◽  
1998 ◽  
Vol 148 (3) ◽  
pp. 1069-1079 ◽  
Author(s):  
Adlane V-B Ferreira ◽  
Zhiqiang An ◽  
Robert L Metzenberg ◽  
N Louise Glass

AbstractThe mating-type locus of Neurospora crassa regulates mating identity and entry into the sexual cycle. The mat A idiomorph encodes three genes, mat A-1, mat A-2, and mat A-3. Mutations in mat A-1 result in strains that have lost mating identity and vegetative incompatibility with mat a strains. A strain containing mutations in both mat A-2 and mat A-3 is able to mate, but forms few ascospores. In this study, we describe the isolation and characterization of a mutant deleted for mat (ΔmatA), as well as mutants in either mat A-2 or mat A-3. The ΔmatA strain is morphologically wild type during vegetative growth, but it is sterile and heterokaryon compatible with both mat A and mat a strains. The mat A-2 and mat A-3 mutants are also normal during vegetative growth, mate as a mat A strain, and produce abundant biparental asci in crosses with mat a, and are thus indistinguishable from a wild-type mat A strain. These data and the fact that the mat A-2 mat A-3 double mutant makes few asci with ascospores indicate that MAT A-2 and MAT A-3 are redundant and may function in the same pathway. Analysis of the expression of two genes (sdv-1 and sdv-4) in the various mat mutants suggests that the mat A polypeptides function in concert to regulate the expression of some sexual development genes.


2002 ◽  
Vol 1 (6) ◽  
pp. 987-999 ◽  
Author(s):  
Hyojeong Kim ◽  
Robert L. Metzenberg ◽  
Mary Anne Nelson

ABSTRACT A putative pheromone precursor gene of Neurospora crassa, mfa-1 (which encodes mating factor a-1), was identified as the most abundant clone in starved mycelial and perithecial cDNA libraries. Northern analysis demonstrated high mfa-1 expression in all mating type a tissues and suggested low expression levels in mat A tissues. The mfa-1 gene was expressed as an approximately 1.2-kb transcript predicted to encode a 24-residue peptide, followed by a long 3′ untranslated region (3′ UTR). The predicted MFA1 sequence showed 100% sequence identity to PPG2 of Sordaria macrospora and structural similarity (a carboxy-terminal CAAX motif) to many hydrophobic fungal pheromone precursors. Mutants with a disrupted open reading frame (ORF) in which the critical cysteine residue had been changed to a nonprenylatable residue, tyrosine (YAAX mutants), were isolated, as were mfa-1 mutants with intact ORFs but multiple mutations in the 3′ noncoding region (CAAX mutants). The 3′ UTR is required for the full range of mfa-1 gene activity. Both classes of mutants showed delayed and reduced vegetative growth (which was suppressed by supplementation with a minute amount [30 μM] of ornithine, citrulline, or arginine), as well as aberrant sexual development. When crossed as female parents to wild-type males, the CAAX and YAAX mutants showed greatly reduced ascospore production. No ascospores were produced in homozygous mfa-1 crosses. As males, YAAX mat a mutants were unable to attract wild-type mat A trichogynes (female-specific hyphae) or to initiate sexual development, while CAAX mat a mutants were able to mate and produce sexual progeny despite their inability to attract mat A trichogynes. In the mat A background, both CAAX and YAAX mutants showed normal male fertility but defective vegetative growth and aberrant female sexual development. Thus, the mfa-1 gene appears to have multiple roles in N. crassa development: (i) it encodes a hydrophobic pheromone with a putative farnesylated and carboxymethylated C-terminal cysteine residue, required by mat a to attract trichogynes of mat A; (ii) it is involved in female sexual development and ascospore production in both mating types; and (iii) it functions in vegetative growth of both mating types.


2021 ◽  
Vol 146 ◽  
pp. 103488
Author(s):  
Midori Tabara ◽  
Hisashi Koiwa ◽  
Nobuhiro Suzuki ◽  
Toshiyuki Fukuhara

2011 ◽  
Vol 75 (2) ◽  
pp. 147-154 ◽  
Author(s):  
Jianping Sun ◽  
Christopher M. Phillips ◽  
Charles T. Anderson ◽  
William T. Beeson ◽  
Michael A. Marletta ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document