scholarly journals Sex Differences in the Oxidative Stress and Inflammation Response During and After Simulated Hemorrhage in Humans

2020 ◽  
Vol 34 (S1) ◽  
pp. 1-1
Author(s):  
Haley Barnes ◽  
Alexander Rosenberg ◽  
My-Loan Luu ◽  
Garen Anderson ◽  
Caroline Rickards
2014 ◽  
Vol 306 (10) ◽  
pp. E1163-E1175 ◽  
Author(s):  
Hisashi Yokomizo ◽  
Toyoshi Inoguchi ◽  
Noriyuki Sonoda ◽  
Yuka Sakaki ◽  
Yasutaka Maeda ◽  
...  

Intrauterine environment may influence the health of postnatal offspring. There have been many studies on the effects of maternal high-fat diet (HFD) on diabetes and glucose metabolism in offspring. Here, we investigated the effects in male and female offspring. C57/BL6J mice were bred and fed either control diet (CD) or HFD from conception to weaning, and offspring were fed CD or HFD from 6 to 20 wk. At 20 wk, maternal HFD induced glucose intolerance and insulin resistance in offspring. Additionally, liver triacylglycerol content, adipose tissue mass, and inflammation increased in maternal HFD. In contrast, extending previous observations, insulin secretion at glucose tolerance test, islet area, insulin content, and PDX-1 mRNA levels in isolated islets were lower in maternal HFD in males, whereas they were higher in females. Oxidative stress in islets increased in maternal HFD in males, whereas there were no differences in females. Plasma estradiol levels were lower in males than in females and decreased in offspring fed HFD and also decreased by maternal HFD, suggesting that females may be protected from insulin deficiency by inhibiting oxidative stress. In conclusion, maternal HFD induced insulin resistance and deterioration of pancreatic β-cell function, with marked sex differences in adult offspring accompanied by adipose tissue inflammation and liver steatosis. Additionally, our results demonstrate that potential mechanisms underlying sex differences in pancreatic β-cell function may be related partially to increases in oxidative stress in male islets and decreased plasma estradiol levels in males.


2019 ◽  
Vol 244 (3) ◽  
pp. 272-278
Author(s):  
Flora S Park ◽  
Victoria L Kay ◽  
Justin D Sprick ◽  
Alexander J Rosenberg ◽  
Garen K Anderson ◽  
...  

Hemorrhage is a leading cause of potentially preventable death in both civilian and military trauma settings. Lower body negative pressure (LBNP) is a validated, non-invasive, and reproducible approach to simulate hemorrhage by inducing central hypovolemia in healthy conscious humans. The oxidative stress response to simulated hemorrhage via LBNP has not been quantified. We hypothesized that systemic markers of oxidative stress would increase with application of maximal, pre-syncopal limited LBNP. Fifteen healthy human subjects (11 M/4 F; age 27 ± 1 y) were recruited for a single LBNP experiment to presyncope (chamber pressure was progressively reduced every 5-min in a stepwise manner). Heart rate was assessed via ECG, arterial pressure and stroke volume (SV) were measured continuously via finger photoplethysmography, muscle oxygen saturation (SmO2) was measured via near-infrared spectroscopy, and venous blood samples were collected at baseline and presyncope. Plasma samples were analyzed for F2-isoprostanes (F2-IsoP), a global marker of oxidative stress. The magnitude of central hypovolemia, indexed by the maximal decrease (%Δ) in SV, ranged from 27 to 74% (53.5 ± 3.9%; P < 0.001), and mean arterial pressure (MAP) decreased by 12.6 ± 2.6% ( P < 0.001 vs. pre-LBNP baseline). F2-IsoP increased by 28.5 ± 11.6% ( P = 0.05) from baseline (24 ± 2 pg/mL) to presyncope (29 ± 3 pg/mL). The increase in F2-IsoP was not associated with %Δ SV ( r = 0.21, P = 0.46), %Δ MAP ( r = 0.05, P = 0.86), %Δ SmO2 ( r = 0.05, P = 0.90), or the maximum level of LBNP attained ( r = 0.35, P = 0.20). Simulated hemorrhage induced by LBNP to presyncope elicited an increase in oxidative stress, but this response was not associated with the magnitude of central hypovolemia, hypotension, or the decrease in peripheral muscle tissue oxygen saturation. These findings have important implications for the study of hemorrhage using LBNP, and future investigations of interventions targeting oxidative stress. Impact statement We characterize the systemic oxidative stress response in young, healthy human subjects with exposure to simulated hemorrhage via application of lower body negative pressure (LBNP). Prior work has demonstrated that LBNP and actual blood loss evoke similar hemodynamic and immune responses (i.e. white blood cell count), but it is unknown whether LBNP elicits oxidative stress resembling that produced by blood loss. We show that LBNP induces a 29% increase in F2-isoprostanes, a systemic marker of oxidative stress. The findings of this investigation may have important implications for the study of hemorrhage using LBNP, including future assessments of targeted interventions that may reduce oxidative stress, such as novel fluid resuscitation approaches.


2019 ◽  
Vol 8 (5) ◽  
pp. 641-653 ◽  
Author(s):  
Jinbao Gao ◽  
Yunjun Li ◽  
Wende Li ◽  
Haijiang Wang

Abstract Neuronal death caused by inflammatory cytokine-mediated neuroinflammation is being extensively explored. Thioredoxin reductase (TrxR) 2 is a novel mediator of inflammation response. In the current study, we focus on the mechanisms of TrxR2 overexpression in inflammation-mediated neuronal death. LPS was used to induce neuroinflammation in N2a cells in vitro. Adenovirus-loaded TrxR2 was transfected into N2a cells to up-regulate TrxR2 expression. Then, cell viability was determined via MTT assay and TUNEL assay. Apoptosis was measured via western blotting and ELISA. Oxidative stress was detected via ELISA and flow cytometry. A pathway inhibitor was used to verify the role of the Akt–Parkin pathway in the LPS-mediated N2a cell death in the presence of TrxR2 overexpression. With the help of immunofluorescence assay and western blotting, we found that TrxR2 expression was significantly reduced in response to LPS treatment, and this effect was associated with N2a cell death via apoptosis. At the molecular level, TrxR2 overexpression elevated the activity of the Akt–Parkin pathway, as evidenced by the increased expression of p-Akt and Parkin. Interestingly, inhibition of the Akt–Parkin pathway abolished the regulatory effect of TrxR2 on LPS-treated N2a cells, as evidenced by the decreased cell viability and increased apoptotic ratio. Besides, TrxR2 overexpression also reduced oxidative stress, inflammation factor transcription and mitochondrial apoptosis. However, inhibition of Akt–Parkin axis abrogated the protective effects of TrxR2 on redox balance, mitochondrial performance and cell survival. LPS-mediated neuronal death was linked to a drop in TrxR2 overexpression and the inactivation of the Akt–Parkin pathway. Overexpression of TrxR2 sustained mitochondrial function, inhibited oxidative stress, repressed inflammation response, and blocked mitochondrial apoptosis, finally sending a pro-survival signal for the N2a cells in the setting of LPS-mediated inflammation environment.


2020 ◽  
Vol 34 (S1) ◽  
pp. 1-1
Author(s):  
Hannah Turbeville ◽  
Michael Garrett ◽  
Jennifer Sasser

2006 ◽  
Vol 41 (5) ◽  
pp. 797-809 ◽  
Author(s):  
Esther Barreiro ◽  
Carlos Coronell ◽  
Barbara Laviña ◽  
Alba Ramírez-Sarmiento ◽  
Mauricio Orozco-Levi ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Longcheng Shang ◽  
Haozhen Ren ◽  
Shuai Wang ◽  
Hanyi Liu ◽  
Anyin Hu ◽  
...  

Ischemia-reperfusion injury (IRI) is a common complication in liver surgeries. It is a focus to discover effective treatments to reduce ischemia-reperfusion injury. Previous studies show that oxidative stress and inflammation response contribute to the liver damage during IRI. SS-31 is an innovated mitochondrial-targeted antioxidant peptide shown to scavenge reactive oxygen species and decrease oxidative stress, but the protective effects of SS-31 against hepatic IRI are not well understood. The aim of our study is to investigate whether SS-31 could protect the liver from damages induced by IRI and understand the protective mechanism. The results showed that SS-31 treatment can significantly attenuate liver injury during IRI, proved by HE staining, serum ALT/AST, and TUNEL staining which can assess the degree of liver damage. Meanwhile, we find that oxidative stress and inflammation were significantly suppressed after SS-31 administration. Furthermore, the mechanism revealed that SS-31 can directly decrease ROS production and regulate STAT1/STAT3 signaling in macrophages, thus inhibiting macrophage M1 polarization. The proinflammation cytokines are then significantly reduced, which suppress inflammation response in the liver. Taken together, our study discovered that SS-31 can regulate macrophage polarization through ROS scavenging and STAT1/STAT3 signaling to ameliorate liver injury; the protective effects against hepatic IRI suggest that SS-31 may be an appropriate treatment for liver IRI in the clinic.


2006 ◽  
Vol 20 (5) ◽  
Author(s):  
Julio C. Sartori‐Valinotti ◽  
Licy L. Yanes ◽  
Radu Iliescu ◽  
Lourdes A. Fortepiani ◽  
Huimin Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document