scholarly journals 20 wk resistance training (RT) in 70 y olds improves glucose handling and leg blood flow (LBF) responsiveness to feeding and exercise‐plus‐feeding without reversing age‐related declines in protein kinase B (PKB) responses or increasing endothelial markers

2010 ◽  
Vol 24 (S1) ◽  
Author(s):  
Bethan Phillips ◽  
Wulf Hildebrandt ◽  
John Williams ◽  
Philip Atherton ◽  
Debbie Rankin ◽  
...  
2019 ◽  
Vol 126 (6) ◽  
pp. 1525-1532 ◽  
Author(s):  
Jay R. Hydren ◽  
Ryan M. Broxterman ◽  
Joel D. Trinity ◽  
Jayson R. Gifford ◽  
Oh Sung Kwon ◽  
...  

Continuous passive leg movement (PLM) is a promising clinical assessment of the age-related decline in peripheral vascular function. To further refine PLM, this study evaluated the efficacy of a single PLM (sPLM), a simplified variant of the more established continuous movement approach, to delineate between healthy young and old men based on vascular function. Twelve young (26 ± 5 yr) and 12 old (70 ± 7 yr) subjects underwent sPLM (a single passive flexion and extension of the knee joint through 90°), with leg blood flow (LBF, common femoral artery with Doppler ultrasound), blood pressure (finger photoplethysmography), and leg vascular conductance (LVC) assessed. A receiver operator characteristic curve analysis was used to determine an age-specific cut score, and a factor analysis was performed to assess covariance. Baseline LBF and LVC were not different between groups ( P = 0.6). The high level of covariance and similar predictive value for all PLM-induced LBF and LVC responses indicates LBF, alone, can act as a surrogate variable in this paradigm. The peak sPLM-induced increase in LBF from baseline was attenuated in the old (Young: 717 ± 227, Old: 260 ± 97 ml/min, P < 0.001; cut score: 372 ml/min), as was the total LBF response (Young: 155 ± 67, Old: 26 ± 17 ml, P < 0.001; cut score: 58 ml). sPLM, a simplified version of PLM, exhibits the prerequisite qualities of a valid screening test for peripheral vascular dysfunction, as evidenced by an age-related attenuation in the peripheral hyperemic response and a clearly delineated age-specific cut score. NEW & NOTEWORTHY Single passive leg movement (sPLM) exhibits the prerequisite qualities of a valid screening test for peripheral vascular dysfunction. sPLM displayed an age-related reduction in the peripheral hemodynamic response for amplitude, duration, initial rate of change, and total change with clearly delineated age-specific cut scores. sPLM has a strong candidate variable that is a simple single numeric value, for which to appraise peripheral vascular function, the 45-s hyperemic response (leg blood flow area under the curve: 45 s).


2005 ◽  
Vol 99 (4) ◽  
pp. 1384-1390 ◽  
Author(s):  
Motohiko Miyachi ◽  
Hirofumi Tanaka ◽  
Hiroshi Kawano ◽  
Mayumi Okajima ◽  
Izumi Tabata

Reductions in basal leg blood flow have been implicated in the pathogenesis of metabolic syndrome and functional impairment in humans. We tested the hypothesis that reductions in basal whole leg blood flow with age are either absent or attenuated in those who perform regular strength training. A total of 104 normotensive men aged 20–34 yr (young) and 35–65 yr (middle aged), who were either sedentary or resistance trained, were studied. Mean and diastolic blood pressures were higher ( P < 0.05–0.001) in the middle-aged compared with the young men, but there were no significant differences between the sedentary and resistance-trained groups. In the sedentary group, basal whole leg blood flow (duplex Doppler ultrasound) and vascular conductance were lower (∼30 and ∼38%, respectively; P < 0.01) in the middle-aged compared with the young men. There were no such age-related differences in the resistance-trained group. In the young men, basal whole leg blood flow and vascular conductance were not different between the two activity groups, but, in the middle-aged men, they were higher (∼35 and ∼36%, respectively; P < 0.01) in the resistance-trained men than in the sedentary men. When blood flow and vascular conductance were expressed relative to the leg muscle mass, the results were essentially the same. We concluded that the age-related reduction in basal whole leg blood flow is absent in resistance-trained men. These results suggest that resistance training may favorably influence leg perfusion in aging humans, independent of its impact on leg muscle mass.


2007 ◽  
Vol 21 (6) ◽  
Author(s):  
Kristen Lynn Jablonski ◽  
Iratxe Eskurza ◽  
Kevin D Monahan ◽  
Douglas R Seals ◽  
Anthony J Donato

2012 ◽  
Vol 112 (3) ◽  
pp. 347-353 ◽  
Author(s):  
Bethan Phillips ◽  
John Williams ◽  
Philip Atherton ◽  
Kenneth Smith ◽  
Wulf Hildebrandt ◽  
...  

One manifestation of age-related declines in vascular function is reduced peripheral (limb) blood flow and vascular conduction at rest and in response to vasodilatory stimuli such as exercise and feeding. Since, even in older age, resistance exercise training (RET) represents an efficacious strategy for increasing muscle mass and function, we hypothesized that likewise RET would improve age-related declines in leg blood flow (LBF) and vascular conductance (LVC). We studied three mixed-sex age groups (young: 18–28 yr, n = 14; middle aged: 45–55 yr, n = 20; older: 65–75 yr, n = 17) before and after 20 wk of whole body RET in the postabsorptive state (BASAL) and after unilateral leg extensions (6 × 8 repetitions; 75% 1 repetition maximum) followed by intermittent mixed-nutrient liquid feeds (∼6.5 kJ·kg−1·30 min−1), which allowed us to discern the acute effects of feeding (nonexercised leg; FED) and exercise plus feeding (exercised leg; FEDEX) on vascular function. We measured LBF using Doppler ultrasound and recorded mean arterial pressure (MAP) to calculate LVC. Our results reveal that although neither age nor RET influenced BASAL LBF, age-related declines in LBF responses to FED were eradicated by RET. Moreover, increases in LBF after FEDEX, which occurred only in young and middle-aged groups before RET (+73 ± 9%, and +90 ± 13%, P < 0.001, respectively), increased in all groups after RET (young +78 ± 10%, middle-aged +96 ± 15%, older +80 ± 19%, P < 0.001). Finally, RET robustly improved LVC under FASTED, FED, and FEDEX conditions in the older group. These data provide novel information that supports the premise that RET represents a valuable strategy to counter age-related impairments in LBF/LVC.


2002 ◽  
Vol 30 (Supplement) ◽  
pp. A7
Author(s):  
Yi-Chen Lai ◽  
P M Kochanek ◽  
P M Shore ◽  
K Janesko ◽  
H Bayir ◽  
...  

2008 ◽  
Vol 22 (S1) ◽  
Author(s):  
Bethan Phillips ◽  
Emilie Wilkes ◽  
Kenneth Smith ◽  
Margaret Baker ◽  
Michael Rennie

2010 ◽  
Vol 35 (6) ◽  
pp. 763-772 ◽  
Author(s):  
Mikel Egaña ◽  
Heather Reilly ◽  
Simon Green

The age-related decline in basal limb blood flow appears to be related to the pathogenesis of metabolic syndrome, noninsulin-dependent diabetes, and cardiovascular disease. Resistance training improves basal limb blood flow and vascular conductance in middle-aged men and women, but it is unknown whether similar vascular effects of training occur in the elderly. This study aimed to examine the effects of a 12-week progressive resistance training program using elastic bands on basal leg blood flow, vascular conductance, and functional performance in postmenopausal elderly women. Sixteen healthy postmenopausal females (age, 67 ± 5 years) were randomly assigned to a control (n = 8) or resistance training (n = 8) group, where they underwent 2 supervised strength sessions per week for 12 weeks. Prior to and at completion of this 12-week period, functional and strength performance and leg haemodynamic responses were measured. The training intervention produced significant increases in basal leg blood flow (31%), vascular conductance (34%), and a significant reduction in cardiac work (i.e., rate pressure product) at rest, as well as significant improvements in the 3 functional ability tests performed (30-s bicep curl, 30-s sit to stand, and back scratch). Haemodynamic or functional performance responses were not altered after the 12 weeks in the control group. This study demonstrates that a resistance training program using elastic bands elicits significant improvements in basal leg blood flow in postmenopausal elderly women.


2005 ◽  
Vol 30 (5) ◽  
pp. 554-575 ◽  
Author(s):  
Dennis W. Koch ◽  
Sean C. Newcomer ◽  
David N. Proctor

Understanding the effects of physiological aging on blood flow to active skeletal muscle and its regulation during exercise has important functional, hemodynamic, and metabolic implications for our rapidly expanding elderly population. During peak exercise involving a large muscle mass, blood flow to the legs is lower in healthy older compared to younger persons; this results from central (reduced cardiac output) and peripheral (reduced leg vascular conductance) limitations. There is considerable variability in the literature concerning age-related changes in leg blood flow during submaximal exercise, with reports of similar or reduced leg blood flaw and vascular conductance in older vs. younger subjects depending on the exercise intensity and the gender and training status of the subjects. However, all the studies involving non-endurance-trained subjects are consistent in that older subjects achieve the requisite leg blood flow at higher arterial perfusion pressures than young subjects, suggesting altered local vasoregulatory mechanisms with aging. Although the nature of these age- related alterations is poorly understood, we have preliminary evidence for augmented sympathetic vasoconstrictor responsiveness in the legs of older men during exercise, and blunted leg vasodilator responsiveness in older women. Systematic research will be needed in order to define the central and local mechanisms underlying these age- and gender-specific differences in muscle vascular responsiveness. Such information will be important for designing future interventions aimed at improving muscle blood supply and functional capacity in older persons. Key words: exercise, vascular responsiveness, human


2001 ◽  
Vol 353 (3) ◽  
pp. 735
Author(s):  
K. PEYROLLIER ◽  
E. HAJDUCH ◽  
A. GRAY ◽  
G. J. LITHERLAND ◽  
A. R. PRESCOTT ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document