Interleukin 1 beta‐induced calcium signaling via TRPA1 channels promotes mitogen‐activated protein kinase‐dependent mesangial cell proliferation

2021 ◽  
Vol 35 (7) ◽  
Author(s):  
Hitesh Soni ◽  
Ravi Kumar ◽  
Praghalathan Kanthakumar ◽  
Adebowale Adebiyi
1998 ◽  
Vol 9 (3) ◽  
pp. 488-496
Author(s):  
B V Bassa ◽  
D D Roh ◽  
M A Kirschenbaum ◽  
V S Kamanna

Previously, it has been shown that atherogenic lipoproteins, through the activation of glomerular cells, stimulate pathobiological processes involved in monocyte infiltration into the mesangium. This study examined the role of LDL and its oxidatively modified variants (mildly oxidatively modified LDL [mm-LDL] and oxidatively modified LDL [ox-LDL]) on the activation of mesangial cell p42 mitogen-activated protein kinase (MAP kinase), a key intracellular signaling mechanism associated with cell proliferation. The incubation of mesangial cells with either LDL, mm-LDL, or ox-LDL induced the activation of MAP kinase dose dependently. The activation of MAP kinase by these lipoproteins in mesangial cells occurred biphasically: initially at 15 min of incubation period and at later time points of 8 to 24 h. No activation of MAP kinase was noted between 30 min (except in LDL) and 6 h. The induction of MAP kinase by both mm-LDL and ox-LDL was greater by 1.5- to 2-fold when compared with LDL. Similarly, these atherogenic lipoproteins stimulated mesangial cell proliferation. Lysophosphatidylcholine, a component of both oxidatively modified variants of LDL, markedly stimulated mesangial cell MAP kinase activity at early incubation times (5 to 30 min) but not at later time points (3 to 24 h), suggesting that lysophosphatidylcholine may, at least in part but not solely, act as an active component of ox-LDL-mediated effects. These data define putative key signal transduction events associated with lipoprotein-mediated induction of mesangial cell proliferation.


2015 ◽  
Vol 12 (2) ◽  
pp. 2643-2649 ◽  
Author(s):  
XIAOSHUANG ZHOU ◽  
CHEN WANG ◽  
JIHUA TIAN ◽  
YANHONG WANG ◽  
YAFENG LI ◽  
...  

2013 ◽  
Vol 41 (01) ◽  
pp. 71-83 ◽  
Author(s):  
Jung Joo Yoon ◽  
Yun Jung Lee ◽  
So Min Lee ◽  
Song Nan Jin ◽  
Dae Gill Kang ◽  
...  

Mesangial cell proliferation is correlated with the progression of renal failure. The purpose of this study was to determine whether a water extract of Poria cocos Wolf (WPC), a well-known medicinal plant, regulates rat mesangial cell proliferation in the presence of high glucose (HG). HG significantly accelerated [3H]-thymidine incorporation, which was inhibited by WPC (1–50 μg/mL) in a dose-dependent manner. Cell migration and fibronectin mRNA expression data also supported the anti-proliferative effect of WPC. Western blot analysis revealed that pretreatment with WPC decreased the expression of cyclins and cyclin-dependent kinases (CDKs) and promoted the expression of p21waf1/cip1and p27kip1. WPC also suppressed HG-induced p38 mitogen-activated protein kinase (p38 MAPK) and extracellular-signal-regulated kinase 1/2 (ERK 1/2) phosphorylation. Furthermore, WPC inhibited HG-induced production of dichlorofluorescein (DCF)-sensitive intracellular reactive oxygen species (ROS). In conclusion, HG promoted mesangial cell proliferation, and WPC inhibited this activity, at least in part, via induction of cell cycle arrest and activation of anti-oxidant properties. Taken together, these results suggest that P. cocos may be a potent regulator of HG-induced proliferation.


1997 ◽  
Vol 273 (6) ◽  
pp. F916-F924 ◽  
Author(s):  
Ayad A. Jaffa ◽  
Bradley S. Miller ◽  
Steven A. Rosenzweig ◽  
Padma S. Naidu ◽  
Victoria Velarde ◽  
...  

Glomerular hypertension and glomerular hypertrophy act early and synergistically to promote glomerular injury in diabetes. We have previously shown that increased renal kinin production contributes to the glomerular hemodynamic abnormalities associated with diabetes. Glomerulosclerosis, characterized by mesangial cell proliferation and matrix expansion, is the final pathway leading to renal failure. The signal(s) initiating mesangial cell proliferation is ill defined. In the present study, we utilized immunofluorescence, immunoprecipitation, and immunoblotting techniques to identify substrates that are tyrosine phosphorylated in response to bradykinin action in mesangial cells. Immunofluorescence microscopy of mesangial cells stained with anti-phosphotyrosine (anti-PY) antibodies following bradykinin treatment (10−9–10−6M) revealed a dose-dependent increase in the labeling of cytoplasmic and nuclear proteins. Immunoprecipitation with anti-PY, followed by immunoblot revealed bradykinin-induced tyrosyl phosphorylation of tubulin and mitogen-activated protein kinase (MAPK). Confocal microscopy of mesangial cells stained for MAPK indicated that bradykinin stimulation resulted in translocation of MAPK from the cytoplasm to the nucleus by 2 h. These data demonstrate that bradykinin action results in the tyrosine phosphorylation of cellular proteins in mesangial cells and suggest a role for tubulin and MAPK in the signaling cascade of bradykinin leading to altered mesangial function.


Sign in / Sign up

Export Citation Format

Share Document