INTRAOPERATIVE ECHOCARDIOGRAPHY AND COLOR FLOW IMAGING DURING PEDIATRIC CARDIOVASCULAR ANESTHESIA AND SURGERY

1988 ◽  
Vol 69 (3A) ◽  
pp. A778-A778 ◽  
Author(s):  
W. J. Greeley ◽  
R. M. Ungerleider ◽  
T. Stanley ◽  
J. A. Kisslo
1992 ◽  
Vol 2 (1) ◽  
pp. 56-64 ◽  
Author(s):  
Ross M. Ungerleider

The use of intraoperative echocardiography with Doppler color flow imaging has acquired increased popularity for early assessment of efficacy of repair of congenital heart defects soon after discontinuance of cardiopulmonary bypass. This technology has been found useful also for evaluating the anatomy of the lesion prior to repair. Furthermore, with the use of color flow mapping, additional anomalies, such as patent arterial duct or multiple ventricular septal defects, which might have been overlooked during the initial examination, can be easily diagnosed. Moreover, intraoperative echocardiography provides the quickest and most sensitive method for a surgeon to look for residual atrioventricular valves regurgitation and/or residual atrial or ventricular septal defects as well as for depressed ventricular contractility. Previous studies1–4have discussed specifically the applicability of intraoperative color flow imaging during the repair of atrioventricular septal defect with a common atrioventricular orifice using both epicardial and transesophageal methodology. Routine intraoperative echocardiography with Doppler color flow imaging has been used since March 1987 at Duke University Medical Center during repair of congenital heart defects. Our aim was to confirm the preoperative dignosis and to assess the quality of repair soon after discontinuance of cardiopulmonary bypass. Our overall experience now includes 612 patients of whom 239 or 39% were less than one year of age at the time of repair. This indicates our tendency to undertake early correction regardless of the age of patients and of the severity of the lesion.


Choonpa Igaku ◽  
2010 ◽  
Vol 37 (3) ◽  
pp. 333-335
Author(s):  
Yoshizo ITOH ◽  
Hidefumi TANIGUCHI ◽  
Masakatsu OISHI ◽  
Eiji HIROTA ◽  
Satoshi HIRAKAWA ◽  
...  

2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
S Chino ◽  
Y Mochizuki ◽  
E Toyosaki ◽  
M Ota ◽  
K Mizuma ◽  
...  

Abstract Background Micro-bubble test by using transcranial color flow imaging (TCCFI) is important as a screening evaluation for diagnosis of paradoxical cerebral embolism which requires the proof of right to left shunt at atrial septum. In addition, high risk features of patent foramen ovale (PFO) that may allow thrombus to easily pass through the PFO itself were previously reported. However, little is known about the association between the degrees on micro-bubble test by TCCFI and the features of high risk PFO. Purpose Our aim is to clarify the relationship between the degree of micro-bubble test in TCCFI and the morphology of PFO from transesophageal echocardiography (TEE). Methods Seventy-seven patients in whom cardiogenic embolism was strongly suspected by neurologists in Showa University from April to December in 2019 were retrospectively studied. 55 patients underwent both TCCFI and TEE with sufficient Valsalva stress. TCCFI grade of micro-bubble test was classified into 3 groups (A: none, B: small, and C: massive), in which signified “none” is no sign of micro-embolic signals (MES) within 30 seconds, “small” is 1 or more MES, and “massive” is so much MES look like a curtain (Figure). Evaluated high risk characteristics of PFO for cerebral embolism as previously reported were as follows; (1) tunnel height, (2) tunnel length, (3) total excursion distance into right and left atrium, (4) existence of Eustachian valve or Chiari network, (6) angle of PFO from inferior vena cava (7) large shunt (20 or more micro-bubbles). Results Of all TCCFI-positive patients (n=32; Group B=19, Group C=13) with cerebral embolism, PFOs were detected in 23 patients in TEE. Therefore, the sensitivity and specificity of TCCFI to PFO were 87% and 63% (AUC=0.75, p<0.001, respectively). Interestingly, all 13 patients (Group C) had manifest PFOs. Moreover, group C include 2 patients with platypnea orthodeoxia syndrome in which hypoxia in the sitting position becomes apparent. Among PFO-positive patients, tunnel height, length, total excursion distance into right and left atrium, and large shunt in TEE were significantly larger in Group C than Group B (p<0.05). Conclusions Micro-bubble test by using TCCFI may have screening advantages in predicting paradoxical cerebral embolism, high-risk morphology of PFO, and platypnea orthodeoxia syndrome. Figure 1 Funding Acknowledgement Type of funding source: None


Sign in / Sign up

Export Citation Format

Share Document