Isoflurane Mimics Ischemic Preconditioning via Activation of KATPChannels 

1997 ◽  
Vol 87 (2) ◽  
pp. 361-370 ◽  
Author(s):  
Judy R. Kersten ◽  
Todd J. Schmeling ◽  
Paul S. Pagel ◽  
Garrett J. Gross ◽  
David C. Warltier

Background The authors tested the hypothesis that isoflurane directly preconditions myocardium against infarction via activation of K(ATP) channels and that the protection afforded by isoflurane is associated with an acute memory phase similar to that of ischemic preconditioning. Methods Barbiturate-anesthetized dogs (n = 71) were instrumented for measurement of systemic hemodynamics. Myocardial infarct size was assessed by triphenyltetrazolium chloride staining. All dogs were subjected to a single prolonged (60 min) left anterior descending coronary artery (LAD) occlusion followed by 3 h of reperfusion. Ischemic preconditioning was produced by four 5-min LAD occlusions interspersed with 5-min periods of reperfusion before the prolonged LAD occlusion and reperfusion. The actions of isoflurane to decrease infarct size were examined in dogs receiving 1 minimum alveolar concentration (MAC) isoflurane that was discontinued 5 min before prolonged LAD occlusion. The interaction between isoflurane and ischemic preconditioning on infarct size was evaluated in dogs receiving isoflurane before and during preconditioning LAD occlusions and reperfusions. To test whether the cardioprotection produced by isoflurane can mimic the acute memory of ischemic preconditioning, isoflurane was discontinued 30 min before prolonged LAD occlusion and reperfusion. The mechanism of isoflurane-induced cardioprotection was evaluated in two final groups of dogs pretreated with glyburide in the presence or absence of isoflurane. Results Myocardial infarct size was 25.3 +/- 2.9% of the area at risk during control conditions. Isoflurane and ischemic preconditioning produced significant (P < 0.05) and equivalent reductions in infarct size (ischemic preconditioning alone, 9.6 +/- 2.0; isoflurane alone, 11.8 +/- 2.7; isoflurane and ischemic preconditioning, 5.1 +/- 1.9%). Isoflurane-induced reduction of infarct size also persisted 30 min after discontinuation of the anesthetic (13.9 +/- 1.5%), independent of hemodynamic effects during LAD occlusion. Glyburide alone had no effect on infarct size (28.3 +/- 3.9%), but it abolished the protective effects of isoflurane (27.1 +/- 4.6%). Conclusions Isoflurane directly preconditions myocardium against infarction via activation of K(ATP) channels in the absence of hemodynamic effects and exhibits acute memory of preconditioning in vivo.

2006 ◽  
Vol 105 (3) ◽  
pp. 503-510 ◽  
Author(s):  
Markus Lange ◽  
Thorsten M. Smul ◽  
Christoph A. Blomeyer ◽  
Andreas Redel ◽  
Karl-Norbert Klotz ◽  
...  

Background Anesthetic and ischemic preconditioning share similar signal transduction pathways. The authors tested the hypothesis that the beta1-adrenergic signal transduction pathway mediates anesthetic and ischemic preconditioning in vivo. Methods Pentobarbital-anesthetized (30 mg/kg) rabbits (n = 96) were instrumented for measurement of systemic hemodynamics and subjected to 30 min of coronary artery occlusion and 3 h of reperfusion. Sixty minutes before occlusion, vehicle (control), 1.0 minimum alveolar concentration desflurane, or sevoflurane, and esmolol (30.0 mg x kg(-1) x h(-1)) were administered for 30 min, respectively. Administration of a single 5-min cycle of ischemic preconditioning was instituted 35 min before coronary artery occlusion. In separate groups, the selective blocker esmolol or the protein kinase A inhibitor H-89 (250 microg/kg) was given alone and in combination with desflurane, sevoflurane, and ischemic preconditioning. Results Baseline hemodynamics and area at risk were not significantly different between groups. Myocardial infarct size (triphenyltetrazolium staining) as a percentage of area at risk was 61 +/- 4% in control. Desflurane, sevoflurane, and ischemic preconditioning reduced infarct size to 34 +/- 2, 36 +/- 5, and 23 +/- 3%, respectively. Esmolol did not alter myocardial infarct size (65 +/- 5%) but abolished the protective effects of desflurane and sevoflurane (57 +/- 4 and 52 +/- 4%, respectively) and attenuated ischemic preconditioning (40 +/- 4%). H-89 did not alter infarct size (60 +/- 4%) but abolished preconditioning by desflurane (57 +/- 5%) and sevoflurane (61 +/- 1%). Ischemic preconditioning (24 +/- 7%) was not affected by H-89. Conclusions The results demonstrate that anesthetic preconditioning is mediated by the beta1-adrenergic pathway, whereas this pathway is not essential for ischemic preconditioning. These results indicate important differences in the mechanisms of anesthetic and ischemic preconditioning.


1998 ◽  
Vol 275 (2) ◽  
pp. H721-H725 ◽  
Author(s):  
Judy R. Kersten ◽  
Todd J. Schmeling ◽  
Karl G. Orth ◽  
Paul S. Pagel ◽  
David C. Warltier

Ischemic preconditioning provides a powerful means to reduce myocardial infarct size in vivo and has been proposed to limit the extent of myocardial infarction in patients. In contrast, hyperglycemia correlates with increases in mortality after acute myocardial infarction. Thus we hypothesized that acute hyperglycemia alters the protection afforded by ischemic preconditioning, and this hypothesis was tested in acutely instrumented dogs subjected to a prolonged (60 min) coronary artery occlusion and 3 h of reperfusion. Ischemic preconditioning was elicited by four 5-min occlusion-reperfusion periods in the presence or absence of an intravenous infusion of 15% dextrose in water to produce acute hyperglycemia (plasma glucose concentration of 300 mg/dl). The dose-dependent effects of hyperglycemia on myocardial infarct size independent of preconditioning stimuli were further evaluated in dogs subjected to increases in plasma glucose concentrations to either 300 or 600 mg/dl. Infarct size (triphenyltetrazolium staining) was 24 ± 2% of the area at risk in control dogs and was significantly ( P < 0.05) decreased by ischemic preconditioning (8 ± 1%). Modest degrees of hyperglycemia (300 mg/dl) had no effect on infarct size (34 ± 4%) but abolished the protective effect of ischemic preconditioning (30 ± 5%). In contrast, profound hyperglycemia (600 mg/dl) increased infarct size (44 ± 6%). Hemodynamics and coronary collateral blood flow (radioactive microspheres) were similar between groups. Thus acute hyperglycemia adversely modulates myocardial injury in response to ischemia in vivo.


2011 ◽  
Vol 301 (5) ◽  
pp. H2130-H2139 ◽  
Author(s):  
Nikolina Vladic ◽  
Zhi-Dong Ge ◽  
Thorsten Leucker ◽  
Anna K. Brzezinska ◽  
Jian-Hai Du ◽  
...  

Cardioprotection by ischemic preconditioning (IPC) is impaired during hyperglycemia, but the mechanisms underlying this phenomenon are poorly understood. This study investigated the role of hyperglycemia to adversely modulate tetrahydrobiopterin (BH4) and heat shock protein 90 (Hsp90) during cardioprotection by IPC. Rabbits or mice underwent 30 min of coronary occlusion followed by reperfusion with or without IPC in the presence or absence of hyperglycemia. IPC significantly ( P < 0.05) decreased myocardial infarct size (46 ± 1 to 19 ± 2% of the area at risk in control and IPC rabbits, respectively) and increased BH4 concentrations (HPLC; 7.6 ± 0.2 to 10.2 ± 0.3 pmol/mg protein, respectively), Hsp90-endothelial nitric oxide synthase (eNOS) association (coimmunoprecipitation and Western blotting in mice; 4.0 ± 0.3 to 5.4 ± 0.1, respectively), and the ratio of phosphorylated eNOS/total eNOS. These beneficial actions of IPC on infarct size, BH4, Hsp90/eNOS, and phosphorylated eNOS were eliminated by hyperglycemia. Pretreatment of animals with the Hsp90 inhibitor geldanamycin (0.6 mg/kg) or the BH4 synthesis inhibitor diamino-6-hydroxypyrimidine (1.0 g/kg) also eliminated cardioprotection produced by IPC. In contrast, the BH4 precursor sepiapterin (2 mg/kg iv) restored the beneficial effects of IPC on myocardial BH4 concentrations, eNOS dimerization, and infarct size during hyperglycemia. A-23871 increased Hsp90-eNOS association (0.33 ± 0.06 to 0.59 ± 0.3) and nitric oxide production (184 ± 17%) in human coronary artery endothelial cells cultured in normal (5.5 mM) but not high (20 mM) glucose media. These data indicate that hyperglycemia eliminates protection by IPC via decreases in myocardial BH4 concentration and disruption of the association of Hsp90 with eNOS. The results suggest that eNOS dysregulation may be a central mechanism of impaired cardioprotection during hyperglycemia.


2008 ◽  
Vol 108 (4) ◽  
pp. 634-642 ◽  
Author(s):  
Weidong Gu ◽  
Franz Kehl ◽  
John G. Krolikowski ◽  
Paul S. Pagel ◽  
David C. Warltier ◽  
...  

Background A growing body of evidence indicates that statins decrease perioperative cardiovascular risk and that these drugs may be particularly efficacious in diabetes. Diabetes and hyperglycemia abolish the cardioprotective effects of ischemic preconditioning (IPC). The authors tested the hypothesis that simvastatin restores the beneficial effects of IPC during hyperglycemia through a nitric oxide-mediated mechanism. Methods Myocardial infarct size was measured in dogs (n = 76) subjected to coronary artery occlusion and reperfusion in the presence or absence of hyperglycemia (300 mg/dl) with or without IPC in separate groups. Additional dogs received simvastatin (20 mg orally daily for 3 days) in the presence or absence of IPC and hyperglycemia. Other dogs were pretreated with N-nitro-l-arginine methyl ester (30 mg intracoronary) with or without IPC, hyperglycemia, and simvastatin. Results Ischemic preconditioning significantly (P &lt; 0.05) reduced infarct size (n = 7, 7 +/- 2%) as compared with control (n = 7, 29 +/- 3%). Hyperglycemia (n = 7), simvastatin (n = 7), N-nitro-l-arginine methyl ester alone (n = 7), and simvastatin with hyperglycemia (n = 6) did not alter infarct size. Hyperglycemia (n = 7, 24 +/- 2%), but not N-nitro-l-arginine methyl ester (n = 5, 10 +/- 1%), blocked the protective effects of IPC. Simvastatin restored the protective effects of IPC in the presence of hyperglycemia (n = 7, 14 +/- 1%), and this beneficial action was blocked by N-nitro-l-arginine methyl ester (n = 7, 29 +/- 4%). Conclusions The results indicate that simvastatin restored the cardioprotective effects of IPC during hyperglycemia by nitric oxide-mediated signaling. The results also suggest that enhanced cardioprotective signaling could be a mechanism for statin-induced decreases in perioperative cardiovascular risk.


1999 ◽  
Vol 90 (3) ◽  
pp. 812-821 ◽  
Author(s):  
Mohamed S. Ismaeil ◽  
Igor Tkachenko ◽  
Kurt A. Gamperl ◽  
Robert F. Hickey ◽  
Brian A. Cason

Background Isoflurane has cardioprotective effects that mimic the ischemic preconditioning phenomenon. Because adenosine triphosphate-sensitive potassium channels and adenosine receptors are implicated in ischemic preconditioning, the authors wanted to determine whether the preconditioning effect of isoflurane is mediated through these pathways. Methods Myocardial infarct size was measured in seven groups of propofol-anesthetized rabbits, each subjected to 30 min of anterolateral coronary occlusion followed by 3 h of reperfusion. Groups differed only in the pretreatments given, and controls received no pretreatment. An ischemia-preconditioned group was pretreated with 5 min of coronary occlusion and 15 min of reperfusion. An isoflurane-preconditioned group was pretreated with 15 min end-tidal isoflurane, 1.1%, and then 15 min of washout. An isoflurane-plus-glyburide group was administered 0.33 mg/kg glyburide intravenously before isoflurane pretreatment. An isoflurane plus 8-(p-sulfophenyl)-theophylline (SPT) group received 7.5 mg/kg SPT intravenously before isoflurane. Additional groups were administered identical doses of glyburide or SPT, but they were not pretreated with isoflurane. Infarct size and area at risk were defined by staining. Data were analyzed by analysis of variance or covariance. Results Infarct size, expressed as a percentage of the area at risk (IS:AR) was 30.2+/-11% (SD) in controls. Ischemic preconditioning and isoflurane preexposure reduced myocardial infarct size significantly, to 8.3+/-5% and 13.4+/-8.2% (P&lt;0.05), respectively. Both glyburide and SPT pretreatment eliminated the preconditioning-like effect of isoflurane (IS:AR = 30.0+/-9.1% and 29.2+/-12.6%, respectively; P = not significant). Neither glyburide nor SPF alone increased infarct size (IS:AR = 33.9+/-7.6% and 31.8+/-12.7%, respectively; P = not significant). Conclusions Glyburide and SPT abolished the preconditioning-like effects of isoflurane but did not increase infarct size when administered in the absence of isoflurane. Isoflurane-induced preconditioning and ischemia-induced preconditioning share similar mechanisms, which include activation of adenosine triphosphate-sensitive potassium channels and adenosine receptors.


2002 ◽  
Vol 282 (6) ◽  
pp. H2018-H2023 ◽  
Author(s):  
Katsuya Tanaka ◽  
Franz Kehl ◽  
Weidong Gu ◽  
John G. Krolikowski ◽  
Paul S. Pagel ◽  
...  

Volatile anesthetics stimulate, but hyperglycemia attenuates, the activity of mitochondrial ATP-regulated K+ channels. We tested the hypothesis that diabetes mellitus interferes with isoflurane-induced preconditioning. Acutely instrumented, barbiturate-anesthetized dogs were randomly assigned to receive 0, 0.32, or 0.64% end-tidal concentrations of isoflurane in the absence or presence of diabetes (3 wk after administration of alloxan and streptozotocin) in six experimental groups. All dogs were subjected to a 60-min left anterior descending coronary artery occlusion followed by 3 h of reperfusion. Myocardial infarct size (triphenyltetrazolium staining) was 29 ± 3% ( n = 8) of the left ventricular area at risk in control experiments. Isoflurane reduced infarct size (15 ± 2 and 13 ± 1% during 0.32 and 0.64% concentrations; n = 8 and 7 dogs, respectively). Diabetes alone did not alter infarct size (30 ± 3%; n = 8) but blocked the protective effects of 0.32% (27 ± 2%; n = 7) and not 0.64% isoflurane (18 ± 3%; n = 7). Infarct size was directly related to blood glucose concentrations in diabetic dogs, but this relationship was abolished by higher concentrations of isoflurane. The results indicate that blood glucose and end-tidal isoflurane concentrations are important determinants of infarct size during anesthetic-induced preconditioning.


2010 ◽  
Vol 298 (6) ◽  
pp. H2201-H2207 ◽  
Author(s):  
Garrett J. Gross ◽  
John E. Baker ◽  
Anna Hsu ◽  
Hsiang-en Wu ◽  
John R. Falck ◽  
...  

We previously demonstrated that several epoxyeicosatrienoic acids (EETs) produce reductions in myocardial infarct size in rats and dogs. Since a recent study demonstrated the release of opioids in mediating the antinociceptive effect of 14,15-EET, we hypothesized that endogenous opioids may also be involved in mediating the cardioprotective effect of the EETs. To test this hypothesis, we used an in vivo rat model of infarction and a rat Langendorff model. In the infarct model, hearts were subjected to 30 min occlusion of the left coronary artery and 2 h reperfusion. Animals were treated with 11,12-EET or 14,15-EET (2.5 mg/kg) alone 15 min before occlusion or with opioid antagonists [naloxone, naltrindole, nor-binaltorphimine (nor-BNI), and d-Phe-Cys-Tyr-d-Trp-Om-Thr-Pen-Thr-NH2 (CTOP), a nonselective, a selective δ, a selective κ, and a selective μ receptor antagonist, respectively] 10 min before EET administration. In four separate groups, antiserum to Met- and Leu-enkephalin and dynorphin-A-(1–17) was administered 50 min before the 11,12-EET administration. Infarct size expressed as a percent of the area at risk (IS/AAR) was 63.5 ± 1.2, 45.3 ± 1.0, and 40.9 ± 1.2% for control, 11,12-EET, and 14,15-EET, respectively. The protective effects of 11,12-EET were abolished by pretreatment with either naloxone (60.5 ± 1.8%), naltrindole (60.8 ± 1.0%), nor-BNI (62.3 ± 2.8%), or Met-enkephalin antiserum (63.2 ± 1.7%) but not CTOP (42.0 ± 3.0%). In isolated heart experiments, 11,12-EET was administered to the perfusate 15 min before 20 min global ischemia followed by 45 min reperfusion in control hearts or in those pretreated with pertussis toxin (48 h). 11,12-EET increased the recovery of left ventricular developed pressure from 33 ± 1 to 45 ± 6% ( P < 0.05) and reduced IS/AAR from 37 ± 4 to 20 ± 3% ( P < 0.05). Both pertussis toxin and naloxone abolished these beneficial effects of 11,12-EET. Taken together, these results suggest that the major cardioprotective effects of the EETs depend on activation of a Gi/o protein-coupled δ- and/or κ-opioid receptor.


2007 ◽  
Vol 293 (5) ◽  
pp. H2845-H2852 ◽  
Author(s):  
Rong Jiang ◽  
Amanda Zatta ◽  
Hajime Kin ◽  
Ningping Wang ◽  
James G. Reeves ◽  
...  

Protease-activated receptor-2 (PAR-2) may have proinflammatory effects in some tissues and protective effects in other tissues. The role of PAR-2 in in vivo myocardial ischemia-reperfusion has not yet been determined. This study tested the hypothesis that PAR-2 activation with the PAR-2 agonist peptide SLIGRL (PAR-2 AP) reduces myocardial infarct size when given at reperfusion in vivo, and this cardioprotection involves the ERK1/2 pathway. Anesthetized rats were randomly assigned to the following groups with 30 min of regional ischemia and 3 h reperfusion: 1) control with saline; 2) vehicle (DMSO); 3) PAR-2 AP, 1 mg/kg given intravenously 5 min before reperfusion; 4) scrambled peptide (SP), 1 mg/kg; 5) the ERK1/2 inhibitor PD-98059 (PD), 0.3 mg/kg given 10 min before reperfusion; 6) the phosphatidylinositol 3-kinase inhibitor LY-294002 (LY), 0.3 mg/kg given 10 min before reperfusion; 7) PD + PAR-2 AP, 0.3 mg/kg PD given 5 min before PAR-2 AP; 8) LY + PAR-2 AP, 0.3 mg/kg LY given 5 min before PAR-2 AP; 9) chelerythrine (Chel) alone, 5 mg/kg given 10 min before reperfusion; and 10) Chel + PAR-2 AP, Chel was given 5 min before PAR-2 AP (10 min before reperfusion). Activation of ERK1/2, ERK5, Akt, and the downstream targets of ERK1/2 [P90 RSK and bcl-xl/bcl-2-associated death promoter (BAD)] was determined by Western blot analysis in separate experiments. PAR-2 AP significantly reduced infarct size compared with control (36 ± 2% vs. 53 ± 1%, P < 0.05), and SP had no effect on infarct size (53 ± 3%). PAR-2 AP significantly increased phosphorylation of ERK1/2, p90RSK, and BAD but not Akt or ERK5. Accordingly, the infarct-size sparing effect of PAR-2 AP was abolished by PD (PAR-2 AP, 36 ± 2% vs. PD + PAR-2 AP, 50 ± 1%; P < 0.05) and by Chel (Chel + PAR-2 AP, 58 ± 2%) but not by LY (PAR-2 AP, 36 ± 2% vs. LY + PAR-2 AP, 38 ± 3%; P > 0.05). Therefore, PAR-2 activation is cardioprotective in the in vivo rat heart ischemia-reperfusion model, and this protection involves the ERK1/2 pathway and PKC.


2003 ◽  
Vol 98 (3) ◽  
pp. 705-711 ◽  
Author(s):  
Lynda M. Ludwig ◽  
Hemal H. Patel ◽  
Garrett J. Gross ◽  
Judy R. Kersten ◽  
Paul S. Pagel ◽  
...  

Background Adenosine triphosphate-regulated potassium channels mediate protection against myocardial infarction produced by volatile anesthetics and opioids. We tested the hypothesis that morphine enhances the protective effect of isoflurane by activating mitochondrial adenosine triphosphate-regulated potassium channels and opioid receptors. Methods Barbiturate-anesthetized rats (n = 131) were instrumented for measurement of hemodynamics and subjected to a 30 min coronary artery occlusion followed by 2 h of reperfusion. Myocardial infarct size was determined using triphenyltetrazolium staining. Rats were randomly assigned to receive 0.9% saline, isoflurane (0.5 and 1.0 minimum alveolar concentration [MAC]), morphine (0.1 and 0.3 mg/kg), or morphine (0.3 mg/kg) plus isoflurane (1.0 MAC). Isoflurane was administered for 30 min and discontinued 15 min before coronary occlusion. In eight additional groups of experiments, rats received 5-hydroxydecanoic acid (5-HD; 10 mg/kg) or naloxone (6 mg/kg) in the presence or absence of isoflurane, morphine, and morphine plus isoflurane. Results Isoflurane (1.0 MAC) and morphine (0.3 mg/kg) reduced infarct size (41 +/- 3%; n = 13 and 38 +/- 2% of the area at risk; n = 10, respectively) as compared to control experiments (59 +/- 2%; n = 10). Morphine plus isoflurane further decreased infarct size to 26 +/- 3% (n = 11). 5-HD and naloxone alone did not affect infarct size, but abolished cardioprotection produced by isoflurane, morphine, and morphine plus isoflurane. Conclusions Combined administration of isoflurane and morphine enhances the protection against myocardial infarction to a greater extent than either drug alone. This beneficial effect is mediated by mitochondrial adenosine triphosphate-regulated potassium channels and opioid receptors in vivo.


1998 ◽  
Vol 275 (5) ◽  
pp. H1865-H1872 ◽  
Author(s):  
Anthony J. Palazzo ◽  
Steven P. Jones ◽  
Donald C. Anderson ◽  
D. Neil Granger ◽  
David J. Lefer

We investigated in vivo coronary P-selectin expression and its pathophysiological consequences in a murine model of myocardial ischemia-reperfusion (MI/R) using wild-type and P-selectin deficient (−/−) mice. Coronary P-selectin expression [μg monoclonal antibody (MAb)/g tissue] was measured using a radiolabeled MAb method after 30 min of myocardial ischemia and 20 min of reperfusion. P-selectin expression in wild-type mice was significantly ( P< 0.01) elevated in the ischemic zone (0.070 ± 0.010) compared with the nonischemic zone (0.037 ± 0.008). Myocardial P-selectin expression was nearly undetectable in P-selectin −/− mice after MI/R. Furthermore, myocardial infarct size (% of area at risk) after 30 min of myocardial ischemia and 120 min of reperfusion was 42.5 ± 4.4 in wild-type mice and 24.4 ± 4.0 in P-selectin −/− mice ( P < 0.05). In additional experiments of prolonged myocardial ischemia (60 min) and reperfusion (120 min), myocardial infarct size was similar in P-selectin −/− mice and wild-type mice. Our results clearly demonstrate the involvement of coronary P-selectin in the development of myocardial infarction after MI/R.


Sign in / Sign up

Export Citation Format

Share Document