scholarly journals Endothelial Nitric Oxide Synthase-Dependent Cerebral Blood Flow Augmentation by L-Arginine After Chronic Statin Treatment

2000 ◽  
Vol 20 (4) ◽  
pp. 709-717 ◽  
Author(s):  
Masaru Yamada ◽  
Zhihong Huang ◽  
Turgay Dalkara ◽  
Matthias Endres ◽  
Ulrich Laufs ◽  
...  

Nitric oxide, a product of nitric oxide synthase activity, relaxes vascular smooth muscle and elevates brain blood flow. We evaluated the importance of eNOS to cerebral blood flow augmentation after L-arginine infusion and increases in flow after eNOS upregulation in SV-129 mice. Blood flow was measured by laser-Doppler flowmetry before and after L-arginine infusion (450 mg/kg during a 15-minute period) or measured by 14C-iodoamphetamine indicator fractionation or 14C-iodoantipyrine tissue equilibration techniques. rCBF increased by 26% (laser Doppler flowmetry) after L-arginine infusion but did not change in mutant mice deficient in eNOS expression. After eNOS upregulation by chronic simvastatin treatment (2 mg/kg subcutaneously, daily for 14 days), L-arginine amplified and sustained the hyperemia (38%) and increased absolute brain blood flow from 86 ± 7 to 119 ± 10 mL/100 g per minute. Furthermore, pretreatment with simvastatin enhanced blood flow within ischemic brain tissue after middle cerebral artery occlusion. Together, these findings suggest that eNOS activity is critical for blood flow augmentation during acute L-arginine infusion, and chronic eNOS upregulation combined with L-arginine administration provides a novel strategy to elevate cerebral blood flow in the normal and ischemic brain.

1996 ◽  
Vol 271 (5) ◽  
pp. H2035-H2044 ◽  
Author(s):  
M. Fabricius ◽  
I. Rubin ◽  
M. Bundgaard ◽  
M. Lauritzen

We examined whether attenuation of the hypercapnic increase of cerebral blood flow (CBF) associated with nitric oxide synthase (NOS) inhibition is related to local neuronal or aortic endothelial NOS activity or local endothelial/neuronal NOS-dependent vasodilation. Halothane-anesthetized rats were ventilated, and CBF was measured by laser-Doppler flowmetry over the parietal and cerebellar cortex. Intravenous N omega-nitro-L-arginine (L-NNA; 30 mg/kg) inhibited brain and aortic NOS activity by 67-70%. Topical L-NNA (1 mM) inhibited brain NOS activity by 91-94%, whereas aortic NOS activity remained constant. In contrast, intravenous L-NNA attenuated the hypercapnic CBF rise much more efficiently than topical L-NNA. 7-Nitroindazole, another NOS inhibitor, attenuated endothelial and neuronal NOS activity equally well and inhibited the hypercapnic CBF increase as effectively as L-NNA. Topical L-NNA and 7-nitroindazole abolished local endothelial NOS-dependent vasodilation after 15 min, whereas hypercapnic CBF was only slightly reduced. L-NNA injected into the tissue abolished neuronal NOS-dependent vasodilation, whereas hypercapnic CBF was unchanged. The findings suggest that local NOS activity, whether neuronal or endothelial, is unimportant for the hypercapnic rise of CBF.


2019 ◽  
Vol 3 (Supplement_1) ◽  
pp. S91-S91
Author(s):  
Candice E Van Skike ◽  
Stacy A Hussong ◽  
Andy Banh ◽  
Veronica Galvan

Abstract We recently identified pathogenic soluble aggregated tau (tau oligomers) in the cerebral microvasculature of human patients with tauopathies, including Alzheimer’s disease (AD). The functional consequences of cerebrovascular tau accumulation are not yet understood. The aim of the present study was to determine whether pathogenic tau accumulation leads to cerebrovascular dysfunction. To this end, we measured neurovascular coupling (NVC), a highly regulated process that synchronizes cerebral blood flow to neuronal activation, using the PS19(P301S) mouse model of tauopathy. The change in cerebral blood flow evoked by whisker stimulation was measured using Laser Doppler flowmetry in PS19 and wildtype control mice and the functional contribution of neuronal and endothelial nitric oxide synthase (nNOS and eNOS, respectively) was calculated. Vascular reactivity was assessed using topical acetylcholine to evoke endothelium-dependent vasodilation. To assess the direct impact of pathogenic tau on cell-specific NOS function, we treated N2a neuroblastoma cells or mouse brain vascular endothelial cells with soluble tau aggregates and measured activity of nNOS and eNOS. Our data indicate isolated overexpression of mutant tau impairs NVC responses, and this deficit is mediated by a reduction in nNOS activity in vivo. Further, our studies suggest tauopathy also impairs endothelium-dependent vasoreactivity in the cortex. Additionally, soluble tau aggregates inhibit the phosphorylation of NOS in primary cultured cells. Therefore, inhibition of NOS phosphorylation by pathogenic soluble tau aggregates may underlie cerebrovascular dysfunction in tauopathies. Thus, therapeutic modulation of pathogenic tau may mitigate brain microvascular deficits, which occur prior to clinical onset in Alzheimer’s disease and potentially other tauopathies.


2003 ◽  
Vol 111 (5) ◽  
pp. 759-759
Author(s):  
Florian P. Limbourg ◽  
Zhihong Huang ◽  
Jean-Christophe Plumier ◽  
Tommaso Simoncini ◽  
Masayuki Fujioka ◽  
...  

1995 ◽  
Vol 15 (5) ◽  
pp. 774-778 ◽  
Author(s):  
Qiong Wang ◽  
Dale A. Pelligrino ◽  
Verna L. Baughman ◽  
Heidi M. Koenig ◽  
Ronald F. Albrecht

The nitric oxide synthase (NOS) inhibitors, nitro-L-arginine, its methyl ester, and N-monomethyl-L-arginine, have been shown to attenuate resting CBF and hypercapnia-induced cerebrovasodilation. Those agents nonspecifically inhibit the endothelial and neuronal NOS (eNOS and nNOS). In the present study, we used a novel nNOS inhibitor, 7-nitroindazole (7-NI) to examine the role of nNOS in CBF during normocapnia and hypercapnia in fentanyl/N2O-anesthetized rats. CBF was monitored using laser-Doppler flowmetry. Administration of 7-NI (80 mg kg−1 i.p.) reduced cortical brain NOS activity by 57%, the resting CBF by 19–27%, and the CBF response to hypercapnia by 60%. The 60% reduction was similar in magnitude to the CBF reductions observed in previous studies in which nonspecific NOS inhibitors were used. In the present study, 7-NI did not increase the MABP. Furthermore, the CBF response to oxotremorine, a blood–brain barrier permeant muscarinic agonist that induces cerebrovasodilation via endothelium-derived NO, was unaffected by 7-NI. These results confirmed that 7-NI does not influence eNOS; they also indicated that the effects of 7-NI on the resting CBF and on the CBF response to hypercapnia in this study were solely related to its inhibitory action on nNOS. The results further suggest that the NO synthesized by the action of nNOS participates in regulation of basal CBF and is the major, if not the only, category of NO contributing to the hypercapnic CBF response.


Stroke ◽  
2020 ◽  
Vol 51 (9) ◽  
pp. 2834-2843
Author(s):  
Daniel J. Beard ◽  
Zhaojin Li ◽  
Anna M. Schneider ◽  
Yvonne Couch ◽  
Marilyn J. Cipolla ◽  
...  

Background and Purpose: Rapamycin is a clinically approved mammalian target of rapamycin inhibitor that has been shown to be neuroprotective in animal models of stroke. However, the mechanism of rapamycin-induced neuroprotection is still being explored. Our aims were to determine if rapamycin improved leptomeningeal collateral perfusion, to determine if this is through eNOS (endothelial nitric oxide synthase)-mediated vessel dilation and to determine if rapamycin increases immediate postreperfusion blood flow. Methods: Wistar and spontaneously hypertensive rats (≈14 weeks old, n=22 and n=15, respectively) were subjected to ischemia by middle cerebral artery occlusion (90 and 120 minutes, respectively) with or without treatment with rapamycin at 30-minute poststroke. Changes in middle cerebral artery and collateral perfusion territories were measured by dual-site laser Doppler. Reactivity to rapamycin was studied using isolated and pressurized leptomeningeal anastomoses. Brain injury was measured histologically or with triphenyltetrazolium chloride staining. Results: In Wistar rats, rapamycin increased collateral perfusion (43±17%), increased reperfusion cerebral blood flow (16±8%) and significantly reduced infarct volume (35±6 versus 63±8 mm 3 , P <0.05). Rapamycin dilated leptomeningeal anastomoses by 80±9%, which was abolished by nitric oxide synthase inhibition. In spontaneously hypertensive rats, rapamycin increased collateral perfusion by 32±25%, reperfusion cerebral blood flow by 44±16%, without reducing acute infarct volume 2 hours postreperfusion. Reperfusion cerebral blood flow was a stronger predictor of brain damage than collateral perfusion in both Wistar and spontaneously hypertensive rats. Conclusions: Rapamycin increased collateral perfusion and reperfusion cerebral blood flow in both Wistar and comorbid spontaneously hypertensive rats that appeared to be mediated by enhancing eNOS activation. These findings suggest that rapamycin may be an effective acute therapy for increasing collateral flow and as an adjunct therapy to thrombolysis or thrombectomy to improve reperfusion blood flow.


1997 ◽  
Vol 87 (Supplement) ◽  
pp. 255A
Author(s):  
Douglas DeWitt ◽  
Larry W. Jenkins ◽  
Chris W. Tidwell ◽  
Donald S. Prough

Sign in / Sign up

Export Citation Format

Share Document