Protein Kinase C Inhibitors Suppress Cell Growth in Established and Low-Passage Glioma Cell Lines. A Comparison between Staurosporine and Tamoxifen

Neurosurgery ◽  
1993 ◽  
Vol 33 (3) ◽  
pp. 495-501 ◽  
Author(s):  
Gordon H. Baltuch ◽  
William T. Couldwell ◽  
Jean-Guy Villemure ◽  
Voon Wee Yong
FEBS Letters ◽  
1994 ◽  
Vol 345 (1) ◽  
pp. 43-46 ◽  
Author(s):  
William T. Couldwell ◽  
David R. Hinton ◽  
Shikun He ◽  
Thomas C. Chen ◽  
Ibrahim Sebat ◽  
...  

1996 ◽  
Vol 84 (6) ◽  
pp. 1024-1032 ◽  
Author(s):  
Ian F. Pollack ◽  
Stephanie Kawecki ◽  
John S. Lazo

✓ Seven-hydroxystaurosporine (UCN-01) is a derivative of the nonselective protein kinase inhibitor staurosporine that exhibits significant selectivity for protein kinase C (PKC) in comparison to a variety of other intracellular kinases and appears to be well tolerated in vivo at concentrations sufficient to achieve effective inhibition of PKC. Because recent studies have indicated that the proliferation of malignant gliomas may result from activation of PKC-mediated pathways and, conversely, may be inhibited by blocking PKC, the authors examined the efficacy of this agent as an inhibitor of proliferation in three established and three low-passage malignant glioma cell lines in vitro. A striking inhibition of proliferation was produced by UCN-01 in each of the cell lines, with a median effective concentration of 20 to 100 nM, which correlated with the median in vitro PKC inhibitory concentration of 20 to 60 nM for this agent in the U-87 and SG-388 glioma cell lines. Inhibition-recovery studies of clonogenic activity indicated that UCN-01 had both cytostatic and cytotoxic effects on the treated cells. Proliferation resumed after short-term (6- and 24-hour) exposures to this agent; in contrast, with longer exposures, recovery of proliferative activity was severely compromised. In addition, UCN-01 enhanced the inhibition of glioma cell proliferation achieved with conventional chemotherapeutic agents, exhibiting synergistic effects with cisplatin and additive effects with 1,3-bis(2-chloroethyl)-1-nitrosourea. In vivo studies in which UCN-01 was administered by continuous intraperitoneal infusion in subcutaneous and intracranial intraparenchymal nude rat models demonstrated significant activity against U-87 glioma xenografts at dose levels that were well tolerated. It is concluded that UCN-01 is an effective agent for the inhibition of glioma proliferation in vitro and in vivo and has potential for clinical applicability in the treatment of human gliomas.


Molecules ◽  
2019 ◽  
Vol 24 (23) ◽  
pp. 4265 ◽  
Author(s):  
Silva ◽  
Rosa ◽  
Tansini ◽  
Martinho ◽  
Tanuri ◽  
...  

The identification of signaling pathways that are involved in gliomagenesis is crucial for targeted therapy design. In this study we assessed the biological and therapeutic effect of ingenol-3-dodecanoate (IngC) on glioma. IngC exhibited dose-time-dependent cytotoxic effects on large panel of glioma cell lines (adult, pediatric cancer cells, and primary cultures), as well as, effectively reduced colonies formation. Nevertheless, it was not been able to attenuate cell migration, invasion, and promote apoptotic effects when administered alone. IngC exposure promoted S-phase arrest associated with p21CIP/WAF1 overexpression and regulated a broad range of signaling effectors related to survival and cell cycle regulation. Moreover, IngC led glioma cells to autophagy by LC3B-II accumulation and exhibited increased cytotoxic sensitivity when combined to a specific autophagic inhibitor, bafilomycin A1. In comparison with temozolomide, IngC showed a mean increase of 106-fold in efficacy, with no synergistic effect when they were both combined. When compared with a known compound of the same class, namely ingenol-3-angelate (I3A, Picato®), IngC showed a mean 9.46-fold higher efficacy. Furthermore, IngC acted as a potent inhibitor of protein kinase C (PKC) activity, an emerging therapeutic target in glioma cells, showing differential actions against various PKC isotypes. These findings identify IngC as a promising lead compound for the development of new cancer therapy and they may guide the search for additional PKC inhibitors.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1584-1584 ◽  
Author(s):  
Klaus Podar ◽  
Marc S. Raab ◽  
Dean Abtahi ◽  
Yu-Tzu Tai ◽  
Boris Lin ◽  
...  

Abstract Members of the protein kinase C (PKC) family of serine- threonine protein kinases mediate multiple physiological functions including differentiation, growth and survival, invasiveness, angiogenesis and drug efflux. Dysregulation of PKC signaling has been implicated in tumor progression and prompted the development of novel anticancer therapeutics. In multiple myeloma (MM) PKC isoforms are: (1) involved in MM cell apoptosis; (2) associated with VEGF- and Wnt- induced MM cell migration; and (3) controlling shedding of IL-6 receptor alpha. However, to date the potential of targeting PKC signaling sequelae in MM has not been evaluated. Here we investigated the novel orally available protein- kinase C (PKC) inhibitor Enzastaurin (Eli Lilly and Company) for its therapeutic efficacy in MM. We first tested the ability of Enzastaurin to suppress MM cell proliferation in a wide array of MM cell lines. Our data show that Enzastaurin inhibits 3H[dT] uptake in all cell lines tested in a low micromolar range equivalent to the concentration range achieved in the patient plasma during clinical trials. Importantly, Enzastaurin also abrogates MM cell proliferation in a BMSC-MM coculture system. We next sought to determine whether Enzastaurin can inhibit cell survival and found dose- dependent induction of MM cell apoptosis in MM cell lines MM.1S, MM.1R, OPM-1, OPM-2, RPMI-8226, and RPMI-dox40. Moreover, Enzastaurin significantly inhibited VEGF- induced MM cell migration on fibronectin. Importantly, IGF-1- induced MM cell migration was abrogated by Enzastaurin, demonstrating the requirement of PKC. Signaling pathways mediating these effects were next examined: Our data show that Enzastaurin abrogates phosphorylation of Akt and GSK3beta, which is required for MM cell growth and migration. Furthermore, ongoing studies are evaluating the efficacy of Enzastaurin in a murine model of human MM. Taken together, these studies show for the first time the preclinical efficacy of the orally available PKC inhibitor Enzastaurin providing the basis for its clinical evaluation to improve patient outcome in MM.


1995 ◽  
Vol 83 (6) ◽  
pp. 1008-1016 ◽  
Author(s):  
Hideyasu Ikemoto ◽  
Eiichi Tani ◽  
Tsuyoshi Matsumoto ◽  
Atsuhisa Nakano ◽  
Jun-Ichi Furuyama

✓ Calphostin C acts at the regulatory domain as a highly selective inhibitor of protein kinase C (PKC), and staurosporine acts at the catalytic domain as a nonspecific PKC inhibitor. The authors investigated the capacity of calphostin C and staurosporine to promote apoptotic fragmentation of DNA in four human glioma cell lines. The exposure of glioma cell lines to 100 nM calphostin C for 2 to 8 hours induced a decrease in particulate PKC activities and exposure for 16 to 24 hours produced a concentration-dependent increase in internucleosomal DNA cleavage on agarose gel electrophoresis. In addition, the human glioma cells showed the classic morphological features of apoptosis: cell shrinkage, nuclear condensation, and the formation of apoptotic bodies. A 24-hour exposure to staurosporine failed to induce internucleosomal DNA fragmentation at concentrations generally used to achieve maximum inhibition of enzyme activity (50 nM) but promoted fragmentation at considerably higher concentration (more than 200 nM). Deoxyribonucleic acid fragments obtained from cells exposed to 100 nM calphostin C for 16 to 24 hours possessed predominantly 59-phosphate termini, consistent with the action of a Ca++/Mg++-dependent endonuclease. Northern and Western blot analyses revealed that the exposure to 100 nM calphostin C for 4 hours failed to alter bcl-2 transcript and protein, but exposure for more than 8 hours decreased the amount of bcl-2 transcript and protein. Together, these observations suggest that calphostin C is capable of inducing apoptotic DNA fragmentation and cell death in a highly concentration dependent manner in human glioma cells and that the apoptosis is closely associated with the decrease in transcription and translation of bcl-2.


Sign in / Sign up

Export Citation Format

Share Document