TISSUE FACTOR RELEASED BY THE ENDOCRINE CELLS OF THE ISLETS OF LANGERHANS IS ASSOCIATED WITH A NEGATIVE OUTCOME OF CLINICAL ISLET TRANSPLANTATION

2004 ◽  
Vol 78 ◽  
pp. 351
Author(s):  
H Johansson ◽  
A Lukinius ◽  
L Moberg ◽  
G Elgue ◽  
O Korsgren ◽  
...  
Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 360-OR
Author(s):  
PETER A. SENIOR ◽  
MICHAEL R. RICKELS ◽  
THOMAS EGGERMAN ◽  
LEVENT BAYMAN ◽  
JULIE QIDWAI ◽  
...  

1995 ◽  
pp. 77-86
Author(s):  
Yuan-Feng Hu ◽  
Jing-Juan Xu ◽  
Wei-Ping Dong ◽  
Yu-Fei Wang ◽  
Hong-De Zhang ◽  
...  

2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Michael F Knoll ◽  
Carmela A Knoll ◽  
Rita Bottino ◽  
Massimo Trucco ◽  
Suzanne Bertera ◽  
...  

Clinical islet transplantation was first realized over four decades ago at the University of Minnesota. Autologous islet transplantation is now widely recognized as a treatment to prevent diabetes in patients after pancreas excision and is offered at major transplant centers throughout the United States and the world. Type 1 diabetes represents a much larger demographic in which islet transplantation may benefit patients. Allogeneic islet transplantation can now offer similar outcomes to pancreas transplantation in a subset of patients with labile type 1 diabetes with less risk than whole organ transplantation. It is recognized as a standard of care in nations around the world but not in the United States, despite the important developmental role US scientists and physicians have played. Early reports of islet transplantation focused on insulin independence that proved to diminish over time. However, regardless of insulin status, islet transplantation provides benefits ranging from improved quality of life to reduction in diabetic complications. A National Institutes of Health sponsored multi-center Phase 3 Clinical Trial (CIT-07) demonstrated safety and efficacy, although the Food and Drug Administration chose to consider islets as a biologic that requires licensure, which makes offering the procedure in the clinic very challenging. Until regulations can be brought into communion with international standards, allogeneic islet transplantation in the United States is unlikely to match international levels of success and once promising programs are left to wither on the vine. Food and Drug Administration approval would open the door for third party medical reimbursement and allow many patients the opportunity to enjoy better health and quality of life. Establishment of clinical islet transplantation for type 1 diabetes would lead to optimizations in procedures making it more efficacious and cost effective while offering support for ongoing islet xenotransplantation studies that could bring islet transplantation to even more patients.


2014 ◽  
pp. 1245-1274
Author(s):  
Paolo Cravedi ◽  
Piero Ruggenenti ◽  
Giuseppe Remuzzi

Author(s):  
Bernhard J. Hering ◽  
David C. Wahoff ◽  
David E. R. Sutherland

2006 ◽  
Vol 184 (5) ◽  
pp. 221-225 ◽  
Author(s):  
Philip J O’Connell ◽  
Wayne J Hawthorne ◽  
Brian J Nankivell ◽  
Anita T Patel ◽  
Stacey N Walters ◽  
...  

2020 ◽  
pp. MCB.00451-20
Author(s):  
Jennifer M. Gilbert ◽  
Melissa T. Adams ◽  
Nadav Sharon ◽  
Hariharan Jayaraaman ◽  
Barak Blum

The spatial architecture of the islets of Langerhans is vitally important for their correct function, and alterations in islet morphogenesis often result in diabetes mellitus. We have previously reported that Roundabout (Robo) receptors are required for proper islet morphogenesis. As part of the Slit-Robo signaling pathway, Robo receptors function in conjunction with Slit ligands to mediate axon guidance, cell migration, and cell positioning in development. However, the role of Slit ligands in islet morphogenesis has not yet been determined. Here we report that Slit ligands are expressed in overlapping and distinct patterns in both endocrine and non-endocrine tissues in late pancreas development. We show that function of either Slit2 or Slit3, which are predominantly expressed in the pancreatic mesenchyme, is required and sufficient for islet morphogenesis, while Slit1, which is predominantly expressed in the β-cells, is dispensable for islet morphogenesis. We further show that Slit functions as a repellent signal to β-cells. These data suggest that clustering of endocrine cells during islet morphogenesis is guided, at least in part, by repelling Slit2/3 signals from the pancreatic mesenchyme.


Sign in / Sign up

Export Citation Format

Share Document