Formalin Fixed Paraffin Embedded Tissue-Based Gene Expression and Immune Cell Profiling as a Tool for Monitoring Immune Response in Kidney Biopsies with Low Grade Inflammation

2018 ◽  
Vol 102 ◽  
pp. S624
Author(s):  
Henrik Junger ◽  
Dejan Dobi ◽  
Tara Sigdel ◽  
Adeline Chen ◽  
Zoltan Laszik
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Minyoung Kwak ◽  
Gulsun Erdag ◽  
Craig L. Slingluff

Abstract Immune cell infiltrates in melanoma have important prognostic value. Gene expression analysis may simultaneously quantify numbers and function of multiple immune cell subtypes in formalin-fixed paraffin-embedded (FFPE) tissues. Prior studies report single gene expression can represent individual immune cell subtypes, but this has not been shown in FFPE melanomas. We hypothesized that gene expression profiling of human melanomas using a new RNA expression technology in FFPE tissue would correlate with the same immune cells identified by immunohistochemistry (IHC). This retrospective study included melanoma specimens analyzed by IHC on tumor tissue microarray (TMA) cores and by gene expression profiling with EdgeSeq Immuno-Oncology Assay using qNPA technology on the corresponding tumors. Standardized gene expression levels were analyzed relative to enumerated cells by IHC using Spearman rank test to calculate r-values. Multivariate analysis was performed by Kruskal–Wallis test. 119 melanoma specimens had both IHC and gene expression information available. There were significant associations between the level of gene expression and its quantified IHC cell marker for CD45+, CD3+, CD8+, CD4+, and CD20+ cells (all p < 0.001). There were also significant associations with exhaustion markers FoxP3+, PD-1+, and PD-L1+ (all p ≤ 0.0001). This new qNPA technology is useful to quantify intratumoral immune cells on FFPE specimens through RNA gene expression in metastatic melanoma. As previous studies have shown on other solid human tumors, we also confirm that the expression level of a single gene may be used to represent a single IHC immune cell marker in melanoma.


2021 ◽  
pp. 030098582110239
Author(s):  
Gregory A. Krane ◽  
Carly A. O’Dea ◽  
David E. Malarkey ◽  
Andrew D. Miller ◽  
C. Ryan Miller ◽  
...  

Evasion of the immune response is an integral part of the pathogenesis of glioma. In humans, important mechanisms of immune evasion include recruitment of regulatory T cells (Tregs) and polarization of macrophages toward an M2 phenotype. Canine glioma has a robust immune cell infiltrate that has not been extensively characterized. The purpose of this study was to determine the distribution of immune cells infiltrating spontaneous intracranial canine gliomas. Seventy-three formalin-fixed, paraffin-embedded tumor samples were evaluated using immunohistochemistry for CD3, forkhead box 3 (FOXP3), CD20, Iba1, calprotectin (Mac387), CD163, and indoleamine 2,3-dioxygenase (IDO). Immune cell infiltration was present in all tumors. Low-grade and high-grade gliomas significantly differed in the numbers of FoxP3+ cells, Mac387+ cells, and CD163+ cells ( P = .006, .01, and .01, respectively). Considering all tumors, there was a significant increase in tumor area fraction of CD163 compared to Mac387 ( P < .0001), and this ratio was greater in high-grade tumors than in low-grade tumors ( P = .005). These data warrant further exploration into the roles of macrophage repolarization or Treg interference therapy in canine glioma.


BMC Cancer ◽  
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Michal Marczyk ◽  
Chunxiao Fu ◽  
Rosanna Lau ◽  
Lili Du ◽  
Alexander J. Trevarton ◽  
...  

Abstract Background Utilization of RNA sequencing methods to measure gene expression from archival formalin-fixed paraffin-embedded (FFPE) tumor samples in translational research and clinical trials requires reliable interpretation of the impact of pre-analytical variables on the data obtained, particularly the methods used to preserve samples and to purify RNA. Methods Matched tissue samples from 12 breast cancers were fresh frozen (FF) and preserved in RNAlater or fixed in formalin and processed as FFPE tissue. Total RNA was extracted and purified from FF samples using the Qiagen RNeasy kit, and in duplicate from FFPE tissue sections using three different kits (Norgen, Qiagen and Roche). All RNA samples underwent whole transcriptome RNA sequencing (wtRNAseq) and targeted RNA sequencing for 31 transcripts included in a signature of sensitivity to endocrine therapy. We assessed the effect of RNA extraction kit on the reliability of gene expression levels using linear mixed-effects model analysis, concordance correlation coefficient (CCC) and differential analysis. All protein-coding genes in the wtRNAseq and three gene expression signatures for breast cancer were assessed for concordance. Results Despite variable quality of the RNA extracted from FFPE samples by different kits, all had similar concordance of overall gene expression from wtRNAseq between matched FF and FFPE samples (median CCC 0.63–0.66) and between technical replicates (median expression difference 0.13–0.22). More than half of genes were differentially expressed between FF and FFPE, but with low fold change (median |LFC| 0.31–0.34). Two out of three breast cancer signatures studied were highly robust in all samples using any kit, whereas the third signature was similarly discordant irrespective of the kit used. The targeted RNAseq assay was concordant between FFPE and FF samples using any of the kits (CCC 0.91–0.96). Conclusions The selection of kit to purify RNA from FFPE did not influence the overall quality of results from wtRNAseq, thus variable reproducibility of gene signatures probably relates to the reliability of individual gene selected and possibly to the algorithm. Targeted RNAseq showed promising performance for clinical deployment of quantitative assays in breast cancer from FFPE samples, although numerical scores were not identical to those from wtRNAseq and would require calibration.


2016 ◽  
Vol 70 (1) ◽  
pp. 25-32 ◽  
Author(s):  
Carla Thomas ◽  
Cleo Robinson ◽  
Ben Dessauvagie ◽  
Benjamin Wood ◽  
Greg Sterrett ◽  
...  

AimBreast carcinoma proliferative activity, histological grade and commercial molecular tests are all important in prognostication and treatment. There is a particular need for improved, standardised techniques for subclassification of grade 2 breast cancers into low-risk and high-risk prognostic groups. In this study we investigated whether gene expression profiling of five proliferation genes was feasible using breast cancer tissue in a clinical setting and whether these profiles could enhance pathological assessment.MethodsExpression of five proliferation gene mRNAs; Ki-67, STK 15, CCNB1, CCND1 and MYBL2, was quantified in 27 breast carcinomas and compared with Ki-67 proliferation index (PI) and Nottingham mitotic score.ResultsExpression of Ki-67, STK15 and MYBL2 mRNA showed moderate Spearman's correlation with Ki-67 PI (p<0.01), but CCND1 and CCNB1 showed weak, non-significant correlation. Individual gene expression did not associate with mitotic score but combined mRNA expression correlated with both Ki-67 PI (p=0.018) and mitotic score (p=0.03; 0.007).ConclusionsThis study confirms mRNA analysis in breast carcinoma formalin-fixed, paraffin-embedded samples is feasible and suggests gene expression profiling, using a small set of five proliferation genes, has potential in aiding histological grading or assessment of proliferative activity of breast cancers. To fully evaluate the clinical applicability of this approach, a larger cohort study with long-term follow-up data is required.


2021 ◽  
Vol 28 (10) ◽  
pp. 683-693
Author(s):  
Vivian Rosery ◽  
Henning Reis ◽  
Konstantinos Savvatakis ◽  
Bernd Kowall ◽  
Martin Stuschke ◽  
...  

The tumor immune microenvironment (TME) represents a key determinant for responses to cancer treatment. However, the immune phenotype of highly proliferative gastroenteropancreatic neuroendocrine neoplasms (GEP-NEN) is still largely elusive. In this retrospective study, we characterized the TME of high-grade (G3, Ki-67 > 20%) GEP-NEN. We analyzed formalin-fixed paraffin-embedded samples from 37 patients with GEP-NEN G3 by immunohistochemistry and multiplex immunofluorescence to address the abundance and spatial interaction of relevant immune subsets. We focused on the expression of immune checkpoint molecules PD-1 and PD-L1, the cytotoxic T-cell marker CD8, and the tumor-associated macrophage marker CD206. Findings were correlated with overall survival (OS) from the date of a cancer diagnosis. Patients with PD-L1-positive tumors (CPS ≥ 1) and intense PD-1+CD8+ immune cell infiltration showed the most favorable median OS. Multiplex immunofluorescence staining of ten representative tissue samples illustrated intratumoral heterogeneity of PD-L1 expression. Dense PD-1+CD8+ immune cell infiltrates were observed in PD-L1-positive tumor regions but not in PD-L1-negative regions. Proximity analysis revealed a spatial interaction between PD-1+CD8+ cells and PD-L1-positive cells. Our data suggest a pre-existing antitumor immune response in the TME in a subgroup of GEP-NEN G3. This supports a targeted clinical exploration of immunotherapeutic approaches.


2019 ◽  
Author(s):  
Christopher A. Hilker ◽  
Aditya V. Bhagwate ◽  
Jin Sung Jang ◽  
Jeffrey G Meyer ◽  
Asha A. Nair ◽  
...  

AbstractFormalin fixed paraffin embedded (FFPE) tissues are commonly used biospecimen for clinical diagnosis. However, RNA degradation is extensive when isolated from FFPE blocks making it challenging for whole transcriptome profiling (RNA-seq). Here, we examined RNA isolation methods, quality metrics, and the performance of RNA-seq using different approaches with RNA isolated from FFPE and fresh frozen (FF) tissues. We evaluated FFPE RNA extraction methods using six different tissues and five different methods. The reproducibility and quality of the prepared libraries from these RNAs were assessed by RNA-seq. We next examined the performance and reproducibility of RNA-seq for gene expression profiling with FFPE and FF samples using targeted (Kinome capture) and whole transcriptome capture based sequencing. Finally, we assessed Agilent SureSelect All-Exon V6+UTR capture and the Illumina TruSeq RNA Access protocols for their ability to detect known gene fusions in FFPE RNA samples. Although the overall yield of RNA varied among extraction methods, gene expression profiles generated by RNA-seq were highly correlated (>90%) when the input RNA was of sufficient quality (≥DV200 30%) and quantity (≥ 100 ng). Using gene capture, we observed a linear relationship between gene expression levels for shared genes that were captured using either All-Exon or Kinome kits. Gene expression correlations between the two capture-based approaches were similar using RNA from FFPE and FF samples. However, TruSeq RNA Access protocol provided significantly higher exon and junction reads when compared to the SureSelect All-Exon capture kit and was more sensitive for fusion gene detection. Our study established pre and post library construction QC parameters that are essential to reproducible RNA-seq profiling using FFPE samples. We show that gene capture based NGS sequencing is an efficient and highly reproducible strategy for gene expression measurements as well as fusion gene detection.


2021 ◽  
Vol 4 (1) ◽  
pp. 61-65
Author(s):  
Elahe Esmaeili ◽  
◽  
Sara Ghaffarpour ◽  
Alireza Sadeghipour ◽  
Tooba Ghazanfari ◽  
...  

Background: Finding a sample of healthy tissue is a critical challenge in research studies. Non-pathological Tissue adjacent to the tumor (NAT) specimens is usually used as the control in several studies. However, little is known about the similarity of NAT to healthy tissues. Here, we compared the expression of Matrix Metalloproteinase 2 (MMP-2) and its inhibitor, Tissue Inhibitors of MMP (TIMP)-1 as extracellular matrix remodeling factors in NAT and autopsy lung tissue. Materials and Methods: RNA of 7 NAT and 6 Formalin-Fixed Paraffin-Embedded (FFPE) lung autopsies from healthy people as the control group was extracted, and cDNA was synthesized. The gene expression levels of MMP-2 and TIMP-1 were evaluated by real-time PCR. Results: There were no significant differences in the expression of MMP-2, TIMP-1, or their ratio between the two groups. Conclusion: The results showed that NAT could be used as healthy controls in lung tissue studies for MMP-2 and TIMP-1.


2017 ◽  
Vol 19 (1) ◽  
pp. 65-71 ◽  
Author(s):  
Assunta De Rienzo ◽  
Robert W. Cook ◽  
Jeff Wilkinson ◽  
Corinne E. Gustafson ◽  
Waqas Amin ◽  
...  

2009 ◽  
Vol 15 (1) ◽  
pp. 80-85 ◽  
Author(s):  
Sean T. Glenn ◽  
Karen L. Head ◽  
Bin T. Teh ◽  
Kenneth W. Gross ◽  
Hyung L. Kim

Formalin-fixed, paraffin-embedded tissues are widely available for gene expression analysis using TaqMan ® PCR. Five methods, including 4 commercial kits, for recovering RNA from paraffin-embedded renal tumor tissue were compared. The MasterPure™ kit from Epicentre produced the highest RNA yield. However, the difference in RNA yield between the kit from Epicenter and Invitrogen’s TRIzol method was not significant. Using the top 3 RNA isolation methods, the manufacturers’ protocols were modified to include an overnight Proteinase K digestion. Overnight protein digestion resulted in a significant increase in RNA yield. To optimize the reverse transcription reaction, conventional reverse transcription with random oligonucleotide primers was compared to reverse transcription using primers specific for genes of interest. Reverse transcription using gene-specific primers significantly increased the quantity of cDNA detectable by TaqMan ® PCR. Therefore, expression profiling of formalin-fixed, paraffin-embedded tissue using TaqMan® qPCR can be optimized by using the MasterPure™ RNA isolation kit modified to include an overnight Proteinase K digestion and gene-specific primers during the reverse transcription.


Sign in / Sign up

Export Citation Format

Share Document