scholarly journals HYPERCHOLESTEROLEMIA (HC) INCREASES THE RISK OF ACUTE REJECTION (AR) AND LEADS TO CHRONIC REJECTION (CR) THROUGH DECREASING ENDOTHELIAL CELL SURFACE ANTIGENS AND INCREASING BOTH EPITHELIAL-TO-MESENCHYMAL TRANSITION (EMT) AND ENDOTHELIAL-TO-MESENCHYMAL TRANSITION (ENDOMT)

2020 ◽  
Vol 104 (S3) ◽  
pp. S342-S342
Author(s):  
B. Handan Ozdemir ◽  
Alev Ok Atilgan ◽  
Aydan Akyuz Ozdemir ◽  
Ebru H. Ayvazoglu Soy ◽  
Mehmet A. Haberal
Author(s):  
K. Chien ◽  
I.P. Shintaku ◽  
A.F. Sassoon ◽  
R.L. Van de Velde ◽  
R. Heusser

Identification of cellular phenotype by cell surface antigens in conjunction with ultrastructural analysis of cellular morphology can be a useful tool in the study of biologic processes as well as in diagnostic histopathology. In this abstract, we describe a simple pre-embedding, protein A-gold staining method which is designed for cell suspensions combining the handling convenience of slide-mounted cell monolayers and the ability to evaluate specimen staining specificity prior to EM embedding.


Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2282
Author(s):  
Valentina Masola ◽  
Mario Bonomini ◽  
Maurizio Onisto ◽  
Pietro Manuel Ferraro ◽  
Arduino Arduini ◽  
...  

Glucose-based solutions remain the most used osmotic agents in peritoneal dialysis (PD), but unavoidably they contribute to the loss of peritoneal filtration capacity. Here, we evaluated at a molecular level the effects of XyloCore, a new PD solution with a low glucose content, in mesothelial and endothelial cells. Cell viability, integrity of mesothelial and endothelial cell membrane, activation of mesothelial and endothelial to mesenchymal transition programs, inflammation, and angiogenesis were evaluated by several techniques. Results showed that XyloCore preserves mesothelial and endothelial cell viability and membrane integrity. Moreover XyloCore, unlike glucose-based solutions, does not exert pro-fibrotic, -inflammatory, and -angiogenic effects. Overall, the in vitro evidence suggests that XyloCore could represent a potential biocompatible solution promising better outcomes in clinical practice.


1993 ◽  
Vol 16 (10) ◽  
pp. 1054-1056
Author(s):  
Dai SASAKI ◽  
Satoshi KOSUNAGO ◽  
Takeshi MIKAMI ◽  
Tatsuji MATSUMOTO ◽  
Masuko SUZUKI

Author(s):  
Long-Yuan Zhou ◽  
Si-Nan Lin ◽  
Florian Rieder ◽  
Min-Hu Chen ◽  
Sheng-Hong Zhang ◽  
...  

Abstract Fibrosis is a major pathway to organ injury and failure, accounting for more than one-third of deaths worldwide. Intestinal fibrosis causes irreversible and serious clinical complications, such as strictures and obstruction, secondary to a complex pathogenesis. Under the stimulation of profibrotic soluble factors, excessive activation of mesenchymal cells causes extracellular matrix deposition via canonical transforming growth factor-β/Smads signaling or other pathways (eg, epithelial-to-mesenchymal transition and endothelial-to-mesenchymal transition) in intestinal fibrogenesis. In recent studies, the importance of noncoding RNAs (ncRNAs) stands out in fibrotic diseases in that ncRNAs exhibit a remarkable variety of biological functions in modulating the aforementioned fibrogenic responses. In this review, we summarize the role of ncRNAs, including the emerging long ncRNAs and circular RNAs, in intestinal fibrogenesis. Notably, the translational potential of ncRNAs as diagnostic biomarkers and therapeutic targets in the management of intestinal fibrosis is discussed based on clinical trials from fibrotic diseases in other organs. The main points of this review include the following: • Characteristics of ncRNAs and mechanisms of intestinal fibrogenesis • Wide participation of ncRNAs (especially the emerging long ncRNAs and circular RNAs) in intestinal fibrosis, including transforming growth factor-β signaling, epithelial-to-mesenchymal transition/endothelial-to-mesenchymal transition, and extracellular matrix remodeling • Translational potential of ncRNAs in the diagnosis and treatment of intestinal fibrosis based on clinical trials from fibrotic diseases in other organs


Sign in / Sign up

Export Citation Format

Share Document