False Negative and Positive Motor Evoked Potentials in One Patient: Is Single Motor Evoked Potential Monitoring Reliable Method?

Spine ◽  
2010 ◽  
Vol 35 (18) ◽  
pp. E912-E916 ◽  
Author(s):  
Jae-Young Hong ◽  
Seung-Woo Suh ◽  
Hitesh N. Modi ◽  
Chang-Yong Hur ◽  
Hae-Ryong Song ◽  
...  
2020 ◽  
Vol 57 (6) ◽  
pp. 1076-1082 ◽  
Author(s):  
Norihiko Shiiya ◽  
Kazumasa Tsuda ◽  
Ken Yamanaka ◽  
Daisuke Takahashi ◽  
Naoki Washiyama ◽  
...  

Abstract OBJECTIVES Canine experiments have shown that transoesophageal motor-evoked potential monitoring is feasible, safe and stable, with a quicker response to ischaemia and a better prognostic value than transcranial motor-evoked potentials. We aimed to elucidate whether or not these findings were clinically reproducible. METHODS A bipolar oesophageal electrode mounted on a large-diameter silicon tube and a train of 5 biphasic wave stimuli were used for transoesophageal stimulation. Results of 18 patients (median age 74.5 years, 13 males) were analysed. RESULTS There were no mortalities, spinal cord injuries or complications related with transoesophageal stimulation. Transcranial motor-evoked potential could not be monitored up to the end of surgery in 3 patients for unknown reasons, 2 of whom from the beginning. Transoesophageal motor-evoked potential became non-evocable after manipulation of a transoesophageal echo probe in 2 patients. Strenuous movement of the upper limbs during transoesophageal stimulation was observed in 3 patients. In 14 patients who successfully completed both monitoring methods up to the end of surgery (11 thoraco-abdominal and 3 descending aortic repair), the final results were judged as false positives in 6 by transcranial stimulation and in 1 by transoesophageal stimulation. The stimulation intensity was significantly lower and the upper limb amplitude was significantly higher by transoesophageal stimulation, while the lower limb amplitude was comparable. CONCLUSIONS Transoesophageal motor-evoked potential monitoring is clinically feasible and safe with a low false positive rate. A better electrode design is required to avoid its migration by transoesophageal echo manipulation. Further studies may be warranted. Clinical registration number UMIN000022320.


1983 ◽  
Vol 58 (1) ◽  
pp. 38-44 ◽  
Author(s):  
Walter J. Levy

✓ There is a need to monitor the motor system, but it has a different blood supply and a different location in the spinal cord from those measured by traditional somatosensory evoked potential monitoring. This paper reports a motor evoked potential monitoring system that uses direct spinal cord stimulation overlying the areas of the motor tract in the cord. In nine cats, evoked potentials were recorded from the dura, which gave a much faster main signal component than the traditional dorsal column evoked potentials, which were also recorded. This 100-m/sec signal was not affected by sectioning of the dorsal columns, which was verified histologically. This mode of monitoring the motor system can be used during surgery. It may also provide a better evaluation of patients after spinal cord trauma.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Davide Giampiccolo ◽  
Cristiano Parisi ◽  
Pietro Meneghelli ◽  
Vincenzo Tramontano ◽  
Federica Basaldella ◽  
...  

Abstract Muscle motor-evoked potentials are commonly monitored during brain tumour surgery in motor areas, as these are assumed to reflect the integrity of descending motor pathways, including the corticospinal tract. However, while the loss of muscle motor-evoked potentials at the end of surgery is associated with long-term motor deficits (muscle motor-evoked potential-related deficits), there is increasing evidence that motor deficit can occur despite no change in muscle motor-evoked potentials (muscle motor-evoked potential-unrelated deficits), particularly after surgery of non-primary regions involved in motor control. In this study, we aimed to investigate the incidence of muscle motor-evoked potential-unrelated deficits and to identify the associated brain regions. We retrospectively reviewed 125 consecutive patients who underwent surgery for peri-Rolandic lesions using intra-operative neurophysiological monitoring. Intraoperative changes in muscle motor-evoked potentials were correlated with motor outcome, assessed by the Medical Research Council scale. We performed voxel–lesion–symptom mapping to identify which resected regions were associated with short- and long-term muscle motor-evoked potential-associated motor deficits. Muscle motor-evoked potentials reductions significantly predicted long-term motor deficits. However, in more than half of the patients who experienced long-term deficits (12/22 patients), no muscle motor-evoked potential reduction was reported during surgery. Lesion analysis showed that muscle motor-evoked potential-related long-term motor deficits were associated with direct or ischaemic damage to the corticospinal tract, whereas muscle motor-evoked potential-unrelated deficits occurred when supplementary motor areas were resected in conjunction with dorsal premotor regions and the anterior cingulate. Our results indicate that long-term motor deficits unrelated to the corticospinal tract can occur more often than currently reported. As these deficits cannot be predicted by muscle motor-evoked potentials, a combination of awake and/or novel asleep techniques other than muscle motor-evoked potentials monitoring should be implemented.


2017 ◽  
Vol 04 (01) ◽  
pp. 036-041
Author(s):  
Pritish Korula ◽  
Ramamani Mariappan ◽  
Justin James ◽  
Prashant Kumar ◽  
Grace Korula

Abstract Background: Evoked potential monitoring such as somatosensory-evoked potential (SSEP) or motor-evoked potential (MEP) monitoring during surgical procedures in proximity to the spinal cord requires minimising the minimum alveolar concentrations (MACs) below the anaesthetic concentrations normally required (1 MAC) to prevent interference in amplitude and latency of evoked potentials. This could result in awareness. Our primary objective was to determine the incidence of awareness while administering low MAC inhalational anaesthetics for these unique procedures. The secondary objective was to assess the adequacy of our anaesthetic technique from neurophysiologist’s perspective. Methods: In this prospective observational pilot study, 61 American Society of Anesthesiologists 1 and 2 patients undergoing spinal surgery for whom intraoperative evoked potential monitoring was performed were included; during the maintenance phase, 0.7–0.8 MAC of isoflurane was targeted. We evaluated the intraoperative depth of anaesthesia using a bispectral (BIS) index monitor as well as the patients response to surgical stimulus (PRST) scoring system. Post-operatively, a modified Bruce questionnaire was used to verify awareness. The adequacy of evoked potential readings was also assessed. Results: Of the 61 patients, no patient had explicit awareness. Intraoperatively, 19 of 61 patients had a BIS value of above sixty at least once, during surgery. There was no correlation with PRST scoring and BIS during surgery. Fifty-four out of 61 patient’s evoked potential readings were deemed ‘good’ or ‘fair’ for the conduct of electrophysiological monitoring. Conclusions: This pilot study demonstrates that administering low MAC inhalational anaesthetics to facilitate evoked potential monitoring does not result in explicit awareness. However, larger studies are needed to verify this. The conduct of SSEP electrophysiological monitoring was satisfactory with the use of this anaesthetic technique. However, the conduct of MEP monitoring was satisfactory, only in patients with Nurick Grade 1 and 2. The MEP response was poor in patients with Nurick Grade 4 and 5.


Sign in / Sign up

Export Citation Format

Share Document