scholarly journals Effect of positive end-expiratory pressure on gastric insufflation during induction of anaesthesia when using pressure-controlled ventilation via a face mask

2019 ◽  
Vol 36 (9) ◽  
pp. 625-632 ◽  
Author(s):  
Per Cajander ◽  
Lennart Edmark ◽  
Rebecca Ahlstrand ◽  
Anders Magnuson ◽  
Alex de Leon
2021 ◽  
Author(s):  
Ignacio Lugones ◽  
Matias Ramos ◽  
Maria Fernanda Biancolini ◽  
Roberto Eduardo Orofino Giambastiani

INTRODUCTION: The SARS-CoV2 pandemic has created a sudden lack of ventilators. DuplicAR® is a novel device that allows simultaneous and independent ventilation of two subjects with a single ventilator. The aims of this study are: a) to determine the efficacy of DuplicAR® to independently regulate the peak and positive-end expiratory pressures in each subject, both under pressure-controlled ventilation and volume-controlled ventilation, and b) to determine the ventilation mode in which DuplicAR® presents the best performance and safety. MATERIALS AND METHODS: Two test lungs are connected to a single ventilator using DuplicAR®. Three experimental stages are established: 1) two identical subjects, 2) two subjects with the same weight but different lung compliance, and 3) two subjects with different weight and lung compliance. In each stage, the test lungs are ventilated in two ventilation modes. The positive-end expiratory pressure requirements are increased successively in one of the subjects. The goal is to achieve a tidal volume of 7 ml/kg for each subject in all different stages through manipulation of the ventilator and the DuplicAR® controllers. RESULTS: DuplicAR® allows adequate ventilation of two subjects with different weight and/or lung compliance and/or PEEP requirements. This is achieved by adjusting the total tidal volume for both subjects (in volume-controlled ventilation) or the highest peak pressure needed (in pressure-controlled ventilation) along with the basal positive-end expiratory pressure on the ventilator, and simultaneously manipulating the DuplicAR® controllers to decrease the tidal volume or the peak pressure in the subject that needs less and/or to increase the positive-end expiratory pressure in the subject that needs more. While ventilatory goals can be achieved in any of the ventilation modes, DuplicAR® performs better in pressure-controlled ventilation, as changes experienced in the variables of one subject do not modify the other one. CONCLUSIONS: DuplicAR® is an effective tool to manage the peak inspiratory pressure and the positive-end expiratory pressure independently in two subjects connected to a single ventilator. The driving pressure can be adjusted to meet the requirements of subjects with different weight and lung compliance. Pressure-controlled ventilation has advantages over volume-controlled ventilation and is therefore the recommended ventilation mode.


2002 ◽  
Vol 96 (1) ◽  
pp. 96-102 ◽  
Author(s):  
Kazuya Tachibana ◽  
Hideaki Imanaka ◽  
Hiroshi Miyano ◽  
Muneyuki Takeuchi ◽  
Keiji Kumon ◽  
...  

Background Recently, a new device has been developed to measure cardiac output noninvasively using partial carbon dioxide (CO(2)) rebreathing. Because this technique uses CO(2) rebreathing, the authors suspected that ventilatory settings, such as tidal volume and ventilatory mode, would affect its accuracy: they conducted this study to investigate which parameters affect the accuracy of the measurement. Methods The authors enrolled 25 pharmacologically paralyzed adult post-cardiac surgery patients. They applied six ventilatory settings in random order: (1) volume-controlled ventilation with inspired tidal volume (V(T)) of 12 ml/kg; (2) volume-controlled ventilation with V(T) of 6 ml/kg; (3) pressure-controlled ventilation with V(T) of 12 ml/kg; (4) pressure-controlled ventilation with V(T) of 6 ml/kg; (5) inspired oxygen fraction of 1.0; and (6) high positive end-expiratory pressure. Then, they changed the maximum or minimum length of rebreathing loop with V(T) set at 12 ml/kg. After establishing steady-state conditions (15 min), they measured cardiac output using CO(2) rebreathing and thermodilution via a pulmonary artery catheter. Finally, they repeated the measurements during pressure support ventilation, when the patients had restored spontaneous breathing. The correlation between two methods was evaluated with linear regression and Bland-Altman analysis. Results When VT was set at 12 ml/kg, cardiac output with the CO(2) rebreathing technique correlated moderately with that measured by thermodilution (y = 1.02x, R = 0.63; bias, 0.28 l/min; limits of agreement, -1.78 to +2.34 l/min), regardless of ventilatory mode, oxygen concentration, or positive end-expiratory pressure. However, at a lower VT of 6 ml/kg, the CO(2) rebreathing technique underestimated cardiac out-put compared with thermodilution (y = 0.70x; R = 0.70; bias, -1.66 l/min; limits of agreement, -3.90 to +0.58 l/min). When the loop was fully retracted, the CO(2) rebreathing technique overestimated cardiac output. Conclusions Although cardiac output was underreported at small VT values, cardiac output measured by the CO(2) rebreathing technique correlates fairly with that measured by the thermodilution method.


2014 ◽  
Vol 120 (2) ◽  
pp. 326-334 ◽  
Author(s):  
Lionel Bouvet ◽  
Marie-Laure Albert ◽  
Caroline Augris ◽  
Emmanuel Boselli ◽  
René Ecochard ◽  
...  

Abstract Background: The authors sought to determine the level of inspiratory pressure minimizing the risk of gastric insufflation while providing adequate pulmonary ventilation. The primary endpoint was the increase in incidence of gastric insufflation detected by ultrasonography of the antrum while inspiratory pressure for facemask pressure-controlled ventilation increased from 10 to 25 cm H2O. Methods: In this prospective, randomized, double-blind study, patients were allocated to one of the four groups (P10, P15, P20, and P25) defined by the inspiratory pressure applied during controlled-pressure ventilation: 10, 15, 20, and 25 cm H2O. Anesthesia was induced using propofol and remifentanil; no neuromuscular-blocking agent was administered. Once loss of eyelash reflex occurred, facemask ventilation was started for a 2-min period while gastric insufflation was detected by auscultation and by real-time ultrasonography of the antrum. The cross-sectional antral area was measured using ultrasonography before and after facemask ventilation. Respiratory parameters were recorded. Results: Sixty-seven patients were analyzed. The authors registered statistically significant increases in incidences of gastric insufflation with inspiratory pressure, from 0% (group P10) to 41% (group P25) according to auscultation, and from 19 to 59% according to ultrasonography. In groups P20 and P25, detection of gastric insufflation by ultrasonography was associated with a statistically significant increase in the antral area. Lung ventilation was insufficient for group P10. Conclusion: Inspiratory pressure of 15 cm H2O allowed for reduced occurrence of gastric insufflation with proper lung ventilation during induction of anesthesia with remifentanil and propofol in nonparalyzed and nonobese patients. (Anesthesiology 2014; 120:326-34)


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Ignacio Lugones ◽  
Matías Ramos ◽  
María Fernanda Biancolini ◽  
Roberto Orofino Giambastiani

Introduction. The SARS-CoV-2 pandemic has created a sudden lack of ventilators. DuplicARⓇ is a novel device that allows simultaneous and independent ventilation of two subjects with a single ventilator. The aims of this study are (a) to determine the efficacy of DuplicARⓇ to independently regulate the peak and positive-end expiratory pressures in each subject, both under pressure-controlled ventilation and volume-controlled ventilation and (b) to determine the ventilation mode in which DuplicARⓇ presents the best performance and safety. Materials and Methods. Two test lungs are connected to a single ventilator using DuplicARⓇ. Three experimental stages are established: (1) two identical subjects, (2) two subjects with the same weight but different lung compliance, and (3) two subjects with different weights and lung compliances. In each stage, the test lungs are ventilated in two ventilation modes. The positive-end expiratory pressure requirements are increased successively in one of the subjects. The goal is to achieve a tidal volume of 7 ml/kg for each subject in all different stages through manipulation of the ventilator and the DuplicARⓇ controllers. Results. DuplicARⓇ allows adequate ventilation of two subjects with different weights and/or lung compliances and/or PEEP requirements. This is achieved by adjusting the total tidal volume for both subjects (in volume-controlled ventilation) or the highest peak pressure needed (in pressure-controlled ventilation) along with the basal positive-end expiratory pressure on the ventilator and simultaneously manipulating the DuplicARⓇ controllers to decrease the tidal volume or the peak pressure in the subject that needs less and/or to increase the positive-end expiratory pressure in the subject that needs more. While ventilatory goals can be achieved in any of the ventilation modes, DuplicARⓇ performs better in pressure-controlled ventilation, as changes experienced in the variables of one subject do not modify the other one. Conclusions. DuplicARⓇ is an effective tool to manage the peak inspiratory pressure and the positive-end expiratory pressure independently in two subjects connected to a single ventilator. The driving pressure can be adjusted to meet the requirements of subjects with different weights and lung compliances. Pressure-controlled ventilation has advantages over volume-controlled ventilation and is therefore the recommended ventilation mode.


Sign in / Sign up

Export Citation Format

Share Document