scholarly journals A compartmentalized type I interferon response in the gut during chronic HIV-1 infection is associated with immunopathogenesis

AIDS ◽  
2018 ◽  
Vol 32 (12) ◽  
pp. 1599-1611 ◽  
Author(s):  
Stephanie M. Dillon ◽  
Kejun Guo ◽  
Gregory L. Austin ◽  
Sara Gianella ◽  
Phillip A. Engen ◽  
...  
Author(s):  
Letizia Santinelli ◽  
Gabriella De Girolamo ◽  
Cristian Borrazzo ◽  
Paolo Vassalini ◽  
Claudia Pinacchio ◽  
...  

PLoS ONE ◽  
2017 ◽  
Vol 12 (3) ◽  
pp. e0173161 ◽  
Author(s):  
Björn Corleis ◽  
Antonella C. Lisanti ◽  
Christian Körner ◽  
Abigail E. Schiff ◽  
Eric S. Rosenberg ◽  
...  

2017 ◽  
Vol 91 (9) ◽  
Author(s):  
Juan García-Arriaza ◽  
Beatriz Perdiguero ◽  
Jonathan L. Heeney ◽  
Michael S. Seaman ◽  
David C. Montefiori ◽  
...  

ABSTRACT The nonreplicating attenuated poxvirus vector NYVAC expressing clade C(CN54) HIV-1 Env(gp120) and Gag-Pol-Nef antigens (NYVAC-C) showed limited immunogenicity in phase I clinical trials. To enhance the capacity of the NYVAC vector to trigger broad humoral responses and a more balanced activation of CD4+ and CD8+ T cells, here we compared the HIV-1-specific immunogenicity elicited in nonhuman primates immunized with two replicating NYVAC vectors that have been modified by the insertion of the K1L and C7L vaccinia virus host range genes and express the clade C(ZM96) trimeric HIV-1 gp140 protein or a Gag(ZM96)-Pol-Nef(CN54) polyprotein as Gag-derived virus-like particles (termed NYVAC-C-KC). Additionally, one NYVAC-C-KC vector was generated by deleting the viral gene B19R, an inhibitor of the type I interferon response (NYVAC-C-KC-ΔB19R). An immunization protocol mimicking that of the RV144 phase III clinical trial was used. Two groups of macaques received two doses of the corresponding NYVAC-C-KC vectors (weeks 0 and 4) and booster doses with NYVAC-C-KC vectors plus the clade C HIV-1 gp120 protein (weeks 12 and 24). The two replicating NYVAC-C-KC vectors induced enhanced and similar HIV-1-specific CD4+ and CD8+ T cell responses, similar levels of binding IgG antibodies, low levels of IgA antibodies, and high levels of antibody-dependent cellular cytotoxicity responses and HIV-1-neutralizing antibodies. Small differences within the NYVAC-C-KC-ΔB19R group were seen in the magnitude of CD4+ and CD8+ T cells, the induction of some cytokines, and the neutralization of some HIV-1 isolates. Thus, replication-competent NYVAC-C-KC vectors acquired relevant immunological properties as vaccine candidates against HIV/AIDS, and the viral B19 molecule exerts some control of immune functions. IMPORTANCE It is of special importance to find a safe and effective HIV/AIDS vaccine that can induce strong and broad T cell and humoral immune responses correlating with HIV-1 protection. Here we developed novel replicating poxvirus NYVAC-based HIV/AIDS vaccine candidates expressing clade C HIV-1 antigens, with one of them lacking the vaccinia virus B19 protein, an inhibitor of the type I interferon response. Immunization of nonhuman primates with these novel NYVAC-C-KC vectors and the protein component gp120 elicited high levels of T cell and humoral immune responses, with the vector containing a deletion in B19R inducing a trend toward a higher magnitude of CD4+ and CD8+ T cell responses and neutralization of some HIV-1 strains. These poxvirus vectors could be considered HIV/AIDS vaccine candidates based on their activation of potential immune correlates of protection.


2017 ◽  
Vol 37 ◽  
pp. 1-16 ◽  
Author(s):  
Teslin S. Sandstrom ◽  
Nischal Ranganath ◽  
Jonathan B. Angel

2020 ◽  
Vol 117 (32) ◽  
pp. 19475-19486
Author(s):  
Carina Elsner ◽  
Aparna Ponnurangam ◽  
Julia Kazmierski ◽  
Thomas Zillinger ◽  
Jenny Jansen ◽  
...  

The DNA sensor cGAS catalyzes the production of the cyclic dinucleotide cGAMP, resulting in type I interferon responses. We addressed the functionality of cGAS-mediated DNA sensing in human and murine T cells. Activated primary CD4+T cells expressed cGAS and responded to plasmid DNA by upregulation of ISGs and release of bioactive interferon. In mouse T cells, cGAS KO ablated sensing of plasmid DNA, and TREX1 KO enabled cells to sense short immunostimulatory DNA. Expression ofIFIT1andMX2was downregulated and upregulated in cGAS KO and TREX1 KO T cell lines, respectively, compared to parental cells. Despite their intact cGAS sensing pathway, human CD4+T cells failed to mount a reverse transcriptase (RT) inhibitor-sensitive immune response following HIV-1 infection. In contrast, infection of human T cells with HSV-1 that is functionally deficient for the cGAS antagonist pUL41 (HSV-1ΔUL41N) resulted in a cGAS-dependent type I interferon response. In accordance with our results in primary CD4+T cells, plasmid challenge or HSV-1ΔUL41N inoculation of T cell lines provoked an entirely cGAS-dependent type I interferon response, including IRF3 phosphorylation and expression of ISGs. In contrast, no RT-dependent interferon response was detected following transduction of T cell lines with VSV-G-pseudotyped lentiviral or gammaretroviral particles. Together, T cells are capable to raise a cGAS-dependent cell-intrinsic response to both plasmid DNA challenge or inoculation with HSV-1ΔUL41N. However, HIV-1 infection does not appear to trigger cGAS-mediated sensing of viral DNA in T cells, possibly by revealing viral DNA of insufficient quantity, length, and/or accessibility to cGAS.


PLoS ONE ◽  
2012 ◽  
Vol 7 (4) ◽  
pp. e33502 ◽  
Author(s):  
Nicolas Vabret ◽  
Marc Bailly-Bechet ◽  
Valérie Najburg ◽  
Michaela Müller-Trutwin ◽  
Bernard Verrier ◽  
...  

Author(s):  
Lai Wei ◽  
Siqi Ming ◽  
Bin Zou ◽  
Yongjian Wu ◽  
Zhongsi Hong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document