Fluttering wing feathers produce the flight sounds of male streamertail hummingbirds
Sounds produced continuously during flight potentially play important roles in avian communication, but the mechanisms underlying these sounds have received little attention. Adult male Red-billed Streamertail hummingbirds ( Trochilus polytmus ) bear elongated tail streamers and produce a distinctive ‘whirring’ flight sound, whereas subadult males and females do not. The production of this sound, which is a pulsed tone with a mean frequency of 858 Hz, has been attributed to these distinctive tail streamers. However, tail-less streamertails can still produce the flight sound. Three lines of evidence implicate the wings instead. First, it is pulsed in synchrony with the 29 Hz wingbeat frequency. Second, a high-speed video showed that primary feather eight (P8) bends during each downstroke, creating a gap between P8 and primary feather nine (P9). Manipulating either P8 or P9 reduced the production of the flight sound. Third, laboratory experiments indicated that both P8 and P9 can produce tones over a range of 700–900 Hz. The wings therefore produce the distinctive flight sound, enabled via subtle morphological changes to the structure of P8 and P9.