scholarly journals Long-term UVB exposure promotes predator-inspection behaviour in a fish

2017 ◽  
Vol 13 (12) ◽  
pp. 20170497 ◽  
Author(s):  
Simon Vitt ◽  
Janina E. Zierul ◽  
Theo C. M. Bakker ◽  
Ingolf P. Rick

Ultraviolet-B radiation (UVB) reaching the earth's surface has increased due to human-caused stratospheric ozone depletion. Whereas the harmful effects of UVB on aquatic organisms are well studied at the molecular and cellular level, recent studies have also begun to address behavioural changes caused by sublethal amounts of UVB. However, the behavioural consequences of long-term exposure to ecologically relevant UVB levels over several life stages are virtually unknown, particularly with regard to predator–prey behaviour. We found increased predator-inspection behaviour together with a smaller body length in three-spined sticklebacks ( Gasterosteus aculeatus ) after fish were exposed for about seven months to natural sunlight conditions with enhanced UVB, compared with full siblings exposed to natural sunlight only. The observed change in antipredator behaviour may reflect a direct behavioural response mediated through UVB-induced oxidative stress during development. Alternatively, the smaller body size in UVB-exposed fish may result in an increased inspection effort allowing them to spend more time foraging. Our findings suggest that, within the scope of environmental change, UVB radiation constitutes an important stress factor by eliciting behavioural responses that influence crucial ecological processes, such as predator–prey interactions.

2004 ◽  
Vol 12 (1) ◽  
pp. 1-70 ◽  
Author(s):  
S Perin ◽  
D RS Lean

Depletion of stratospheric ozone, the principal atmospheric attenuator of ultraviolet-B (UVB) radiation, by man-made chemicals has raised scientific and public concern regarding the biological effects of increased UVB radiation on Earth. There is an increased awareness that existing levels of solar UV radiation have an important influence on biological and chemical processes in aquatic ecosystems. For aquatic organisms, numerous studies have shown direct detrimental effects of UVB radiation at each trophic level. Fortunately, many aquatic organisms also possess a range of photoprotective mechanisms against UV radiation toxicity. In addition to its direct impact, harmful effects of UVB radiation at a single-trophic level can cascade through the food web and indirectly affect organisms from other trophic levels. Because UV radiation photochemically reacts with humic substances and other photosensitive agents in the water, increases in solar UVB can also indirectly affect aquatic organisms through the production and (or) release of different photoproducts like biologically available nutrients and harmful reactive oxygen species. Polar aquatic ecosystems have been of particular concern, since stratospheric ozone-related UVB increases have been the greatest in these regions. With the influences of climate warming and the possibility of future volcanic eruptions, ozone losses are expected to get worse in the Arctic stratosphere, and the ozone layer recovery may not follow the slow decline of industrial ozone-depleting compounds in the atmosphere. Climate warming is also expected to bring important changes in underwater ultraviolet radiation (UVR) penetration in Arctic freshwaters that would be more significant to the aquatic biota than stratospheric ozone depletion.Key words: Arctic, UV radiation, UVB, ozone depletion, climate change, aquatic ecosystems.


1996 ◽  
Vol 4 (1) ◽  
pp. 1-7
Author(s):  
John H. Epstein

Recent evidence indicates that there has been a reduction in the stratospheric ozone over the northern hemisphere, as well as the Antarctic and Arctic latitudes. This has resulted in an increased penetration of ultraviolet B (UVB) at least as measured at Toronto, Canada, since 1989. If no precautions are observed by the human population, this could eventually result in an increase in the skin cancer incidence. This would be especially true for the most common cancers, that is, the nonmelanoma skin cancers (NMSCs), basal cell carcinomas and squamous cell carcinomas. In addition it has been predicted that the third most common skin cancer, the malignant melanoma, would also increase in incidence. However, the relationship between UVB radiation and melanoma formation is much less clear than it is for NMSCs. Clinically people with a loss or lack of melanin protection such as those with occulocutaneous albinism and vitiligo, or much more commonly, people with light skin, eyes, and hair would be at greatest risk. Also increased UVB penetration could exacerbate certain infections such as herpes simplex. People with UVB-sensitive diseases including solar urticaria, polymorphous light eruptions, lupus erythematosus, dermatomyositis, pemphigus, pemphigoid, Darier's disease, familial benign chronic pemphigus, and certain recessive degenerative genodermatoses would also be potentially more vulnerable.Key words: ozone, ultraviolet B (UVB), skin cancer, photosensitive skin diseases.


Medicina ◽  
2021 ◽  
Vol 57 (3) ◽  
pp. 273
Author(s):  
Young Ah Jang ◽  
Bo Ae Kim

Background and objectives: Reactive oxygen species (ROS) overwhelm the antioxidant defense system, induce oxidative stress, and increase matrix metalloproteinase (MMP) expression, resulting in skin aging. Thus, preventing ultraviolet B (UVB)-induced skin damage can attenuate skin aging. Spirulina (a biomass of cyanobacteria, also called blue-green algae) is comprised of prokaryotes, whereas microalgae are eukaryotes and are rich in phycocyanin, a powerful antioxidant. Materials and Methods: Here, we investigated the photoprotective effects of spirulina-derived C-phycocyanin (C-PC) against UVB radiation using keratinocytes (HaCaT cells). Results: UVB radiation increased MMP-1 and MMP-9 expression but decreased involucrin, filaggrin, and loricrin expression. C-PC showed no toxicity at concentrations of 5–80 μg/mL in terms of HaCaT cell viability. UVB-irradiated HaCaT cells had a 50.8% survival rate, which increased to 80.3% with C-PC treatment. MMP expression increased with UVB treatment, whereas MMP-1 and MMP-9 concentrations decreased with C-PC treatment. UVB reduced involucrin, filaggrin, and loricrin expression in HaCaT cells, but 80 μg/mL C-PC increased their expression by >25%. In the UVB radiation group, dichlorofluorescin diacetate fluorescence intensity in HaCaT cells increased by 81.6% compared with that in the control group, whereas ROS production was reduced by 51.2% and 55.1% upon treatment with 40 and 80 μg/mL C-PC, respectively. Conclusions: C-PC might reduce or prevent skin aging by reducing UVB irradiation-induced skin wrinkles and free radicals.


2001 ◽  
Vol 56 (9-10) ◽  
pp. 745-754 ◽  
Author(s):  
Ken G Ryan ◽  
Ewald E Swinny ◽  
Chris Winefield ◽  
Kenneth R Markham

AbstractWild-type Arabidopsis L. leaves exposed to low ultraviolet-B (U V B ) conditions contained predominantly kaempferol glycosides, with low levels of quercetin glycosides. The flavonoid level doubled on treatment with UVB and an increase in the ratio of quercetin: kaempferol was observed. These results suggest that flavonols protect Arabidopsis plants from UVB damage, and indicate that the flavonoid 3’-hydroxylase (F3’H) enzyme, which converts dihydrokaempferol to dihydroquercetin, may play a crucial role. The tt7 mutant lacks this gene and, after treatment with sub-ambient UVB, contained kaempferol glycosides exclusively, to a level of total flavonols similar to that in wild-type Arabidopsis. Total flavonols after enhanced UVB treatment were higher in tt7 than in similarly treated wild-type plants, and only kaempferol glycosides were detected. Despite this high level, tt7 plants were less tolerant of UVB radiation than wild-type plants. These observations suggests that kaempferol is a less effective photoprotectant than quercetin. The chalcone isomerase (CHI) mutant (tt5) surprisingly did not accumulate naringenin chalcone, and this suggests that the mutation may not be restricted to the CHI gene alone. The concentration of hydroxycinnamic acid derivatives did not change with UVB treatment in most varieties indicating that their role in UV photoprotection may be subordinate to that of the flavonoids.


2010 ◽  
Vol 5 (3) ◽  
pp. 227-230 ◽  
Author(s):  
Paul H. Gobster

What does ecological restoration mean in an urban context? More than half of the world’s population now lives in cities, and in response to the dynamic patterns of urbanization, a growing number of ecologists, land managers, and volunteers are focusing their efforts in and around cities to restore remnants of natural diversity (Ingram 2008). Ecological restoration is still a quite youthful field, yet many scientists and practitioners hold a relatively fixed set of criteria for what defines a successful restoration project, irrespective of where sites are located. Among the criteria commonly stated, sites should be composed of indigenous species, have a structure and diversity characteristic of currently undisturbed or historically documented “reference” sites, and be maintained through ecological processes such as fire that ensure long-term sustainability with minimal human assistance (Ruiz-Jaén and Aide 2005; SER International 2004). Application of these criteria has led to many ecologically successful restorations, but some ecologists in the field have begun to question whether the same standards can be realistically applied to sites such as those within urban areas that have been radically altered by past human activity (e.g., Martínez and López-Barerra 2008) or are being influenced by novel conditions that result in unpredictable trajectories (Choi 2007). Perhaps more significantly, it is becoming increasingly recognized that the broader viability of restoration projects, especially those in urban areas, hinges on how socially successful they are in gaining public acceptance for restoration activities and practices, building constituencies to assist with implementation and maintenance, and addressing a broader set of sustainability goals that reach beyond the protection of native biodiversity (e.g., Choi et al. 2008; Hobbs 2007; Rosenzweig 2003).


2016 ◽  
Vol 67 (2) ◽  
pp. 195 ◽  
Author(s):  
P. Vásquez ◽  
A. Llanos-Rivera ◽  
L. R. Castro ◽  
C. Fernandez

It has been proposed that current levels of ultraviolet B (UVB) radiation could cause lethal or sublethal effects on fish embryos located in the upper layers of the water column. Observed levels of UVB off central Chile (36°S, 73°W) indicate that planktonic fish embryos could be exposed to harmful UVB radiation. From July 2011 to January 2012 embryos from anchoveta (Engraulis ringens) and common sardine (Strangomera bentincki) were used to test experimentally whether the UVB levels in central Chile produce lethal or sublethal effects in epipelagic fish embryos. Simultaneously, whether the embryos might be exposed to harmful UVB levels in the field was investigated. Our experimental results show that UVB may cause a decrease in hatching success, changes in buoyancy and embryonic malformations. These results, along with the observed vertical distribution of embryos and UVB radiation levels in the field during late spring suggest that lethal and sublethal effects may be occurring in the embryos of both species.


2017 ◽  
Vol 17 (20) ◽  
pp. 12269-12302 ◽  
Author(s):  
William T. Ball ◽  
Justin Alsing ◽  
Daniel J. Mortlock ◽  
Eugene V. Rozanov ◽  
Fiona Tummon ◽  
...  

Abstract. Observations of stratospheric ozone from multiple instruments now span three decades; combining these into composite datasets allows long-term ozone trends to be estimated. Recently, several ozone composites have been published, but trends disagree by latitude and altitude, even between composites built upon the same instrument data. We confirm that the main causes of differences in decadal trend estimates lie in (i) steps in the composite time series when the instrument source data changes and (ii) artificial sub-decadal trends in the underlying instrument data. These artefacts introduce features that can alias with regressors in multiple linear regression (MLR) analysis; both can lead to inaccurate trend estimates. Here, we aim to remove these artefacts using Bayesian methods to infer the underlying ozone time series from a set of composites by building a joint-likelihood function using a Gaussian-mixture density to model outliers introduced by data artefacts, together with a data-driven prior on ozone variability that incorporates knowledge of problems during instrument operation. We apply this Bayesian self-calibration approach to stratospheric ozone in 10° bands from 60° S to 60° N and from 46 to 1 hPa (∼ 21–48 km) for 1985–2012. There are two main outcomes: (i) we independently identify and confirm many of the data problems previously identified, but which remain unaccounted for in existing composites; (ii) we construct an ozone composite, with uncertainties, that is free from most of these problems – we call this the BAyeSian Integrated and Consolidated (BASIC) composite. To analyse the new BASIC composite, we use dynamical linear modelling (DLM), which provides a more robust estimate of long-term changes through Bayesian inference than MLR. BASIC and DLM, together, provide a step forward in improving estimates of decadal trends. Our results indicate a significant recovery of ozone since 1998 in the upper stratosphere, of both northern and southern midlatitudes, in all four composites analysed, and particularly in the BASIC composite. The BASIC results also show no hemispheric difference in the recovery at midlatitudes, in contrast to an apparent feature that is present, but not consistent, in the four composites. Our overall conclusion is that it is possible to effectively combine different ozone composites and account for artefacts and drifts, and that this leads to a clear and significant result that upper stratospheric ozone levels have increased since 1998, following an earlier decline.


Author(s):  
David J Beerling ◽  
Michael Harfoot ◽  
Barry Lomax ◽  
John A Pyle

The discovery of mutated palynomorphs in end-Permian rocks led to the hypothesis that the eruption of the Siberian Traps through older organic-rich sediments synthesized and released massive quantities of organohalogens, which caused widespread O 3 depletion and allowed increased terrestrial incidence of harmful ultraviolet-B radiation (UV-B, 280–315 nm; Visscher et al . 2004 Proc. Natl Acad. Sci. USA 101 , 12 952–12 956). Here, we use an extended version of the Cambridge two-dimensional chemistry–transport model to evaluate quantitatively this possibility along with two other potential causes of O 3 loss at this time: (i) direct effects of HCl release by the Siberian Traps and (ii) the indirect release of organohalogens from dispersed organic matter. According to our simulations, CH 3 Cl released from the heating of coals alone caused comparatively minor O 3 depletion (5–20% maximum) because this mechanism fails to deliver sufficiently large amounts of Cl into the stratosphere. The unusual explosive nature of the Siberian Traps, combined with the direct release of large quantities of HCl, depleted the model O 3 layer in the high northern latitudes by 33–55%, given a main eruptive phase of less than or equal to 200 kyr. Nevertheless, O 3 depletion was most extensive when HCl release from the Siberian Traps was combined with massive CH 3 Cl release synthesized from a large reservoir of dispersed organic matter in Siberian rocks. This suite of model experiments produced column O 3 depletion of 70–85% and 55–80% in the high northern and southern latitudes, respectively, given eruption durations of 100–200 kyr. On longer eruption time scales of 400–600 kyr, corresponding O 3 depletion was 30–40% and 20–30%, respectively. Calculated year-round increases in total near-surface biologically effective (BE) UV-B radiation following these reductions in O 3 layer range from 30–60 (kJ m −2  d −1 ) BE up to 50–100 (kJ m −2  d −1 ) BE . These ranges of daily UV-B doses appear sufficient to exert mutagenic effects on plants, especially if sustained over tens of thousands of years, unlike either rising temperatures or SO 2 concentrations.


Sign in / Sign up

Export Citation Format

Share Document